Fe3O4/SiO2 decorated trimesic acid-melamine nanocomposite: a reusable supramolecular organocatalyst for efficient multicomponent synthesis of imidazole derivatives

Abstract This article describes supramolecular Fe3O4/SiO2 decorated trimesic acid-melamine (Fe3O4/SiO2-TMA-Me) nanocomposite that can be prepared with features that combine properties of different materials to fabricate a structurally unique hybrid material. In particular, we have focused on design,...

Full description

Bibliographic Details
Main Authors: Babak Fattahi, Mohammad G. Dekamin
Format: Article
Language:English
Published: Nature Portfolio 2023-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-27408-7
Description
Summary:Abstract This article describes supramolecular Fe3O4/SiO2 decorated trimesic acid-melamine (Fe3O4/SiO2-TMA-Me) nanocomposite that can be prepared with features that combine properties of different materials to fabricate a structurally unique hybrid material. In particular, we have focused on design, synthesis and evaluation a heterogeneous magnetic organocatalyst containing acidic functional-groups for the synthesis of biologically important imidazole derivatives in good to excellent yields. The introduced Fe3O4/SiO2-TMA-Me nanomaterial was characterized by different techniques such as FTIR, XRD, EDX, FESEM, TEM, TGA and DTA. As a noteworthy point, the magnetic catalytic system can be recycled and reused for more than seven consecutive runs while its high catalytic activity remains under the optimized conditions.
ISSN:2045-2322