Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)

设p为素数,r≥0是整数.利用广义Fermat方程的深刻结论证明了:若3 ≤ q<100,q≠ 31,则当p ≥ 5 时,超椭圆曲线yp = x(x+qr)上仅有平凡的有理点y = 0;当q = 5,11,23,29,41,47,59,83时,给出了该超椭圆曲线所有的有理点(x,y).特别地,当q = 3且r = 1时,证明了超椭圆曲线yp = x(x+3)仅在p = 2时有非平凡的有理点(x,y),并给出了此时所有的非平凡有理点....

Full description

Bibliographic Details
Main Authors: YANGShichun(杨仕椿), TANGJiangang(汤建钢)
Format: Article
Language:zho
Published: Zhejiang University Press 2016-11-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2016.06.009
_version_ 1797235785956589568
author YANGShichun(杨仕椿)
TANGJiangang(汤建钢)
author_facet YANGShichun(杨仕椿)
TANGJiangang(汤建钢)
author_sort YANGShichun(杨仕椿)
collection DOAJ
description 设p为素数,r≥0是整数.利用广义Fermat方程的深刻结论证明了:若3 ≤ q<100,q≠ 31,则当p ≥ 5 时,超椭圆曲线yp = x(x+qr)上仅有平凡的有理点y = 0;当q = 5,11,23,29,41,47,59,83时,给出了该超椭圆曲线所有的有理点(x,y).特别地,当q = 3且r = 1时,证明了超椭圆曲线yp = x(x+3)仅在p = 2时有非平凡的有理点(x,y),并给出了此时所有的非平凡有理点.
first_indexed 2024-04-24T16:53:29Z
format Article
id doaj.art-437f8e4c221c4dd2945c03c465949a6f
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T16:53:29Z
publishDate 2016-11-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-437f8e4c221c4dd2945c03c465949a6f2024-03-29T01:58:36ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972016-11-0143667667810.3785/j.issn.1008-9497.2016.06.009Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)YANGShichun(杨仕椿)0https://orcid.org/0000-0001-5692-7479TANGJiangang(汤建钢)1https://orcid.org/0000-0001-7662-0394 1.Department of Mathematics and Finance, Aba Teachers University, Wenchuan 623000, Sichuan Province, China( 1.阿坝师范学院数学与财经系,四川 汶川 623000) 2.College of Mathematics and Statistics, Yili Normal University, Yinning 835000, the Xinjiang Uygur Autonomous Region, China( 2.伊犁师范学院数学与统计学院,新疆 伊宁 835000)设p为素数,r≥0是整数.利用广义Fermat方程的深刻结论证明了:若3 ≤ q<100,q≠ 31,则当p ≥ 5 时,超椭圆曲线yp = x(x+qr)上仅有平凡的有理点y = 0;当q = 5,11,23,29,41,47,59,83时,给出了该超椭圆曲线所有的有理点(x,y).特别地,当q = 3且r = 1时,证明了超椭圆曲线yp = x(x+3)仅在p = 2时有非平凡的有理点(x,y),并给出了此时所有的非平凡有理点.https://doi.org/10.3785/j.issn.1008-9497.2016.06.009有理点超椭圆曲线广义fermat方程
spellingShingle YANGShichun(杨仕椿)
TANGJiangang(汤建钢)
Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)
Zhejiang Daxue xuebao. Lixue ban
有理点
超椭圆曲线
广义fermat方程
title Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)
title_full Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)
title_fullStr Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)
title_full_unstemmed Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)
title_short Rational points on a class of super elliptic curve(一类超椭圆曲线上的有理点)
title_sort rational points on a class of super elliptic curve 一类超椭圆曲线上的有理点
topic 有理点
超椭圆曲线
广义fermat方程
url https://doi.org/10.3785/j.issn.1008-9497.2016.06.009
work_keys_str_mv AT yangshichunyángshìchūn rationalpointsonaclassofsuperellipticcurveyīlèichāotuǒyuánqūxiànshàngdeyǒulǐdiǎn
AT tangjiangangtāngjiàngāng rationalpointsonaclassofsuperellipticcurveyīlèichāotuǒyuánqūxiànshàngdeyǒulǐdiǎn