Performance study of electrochemical micromachining using square composite electrode for copper

The use of micro components is increasing day by day in the industries such as aviation, power circuit boards, inkjet nozzle, and biomedical. Among various non-traditional micromachining methods, electrochemical micromachining (EMM) shows unique characteristics, such as no tool wear, no residual str...

Full description

Bibliographic Details
Main Authors: Arul Thayammal Ganesan, Perumal Varatharaju, Thanigaivelan Rajasekaran
Format: Article
Language:English
Published: Association of the Chemical Engineers of Serbia 2022-01-01
Series:Chemical Industry and Chemical Engineering Quarterly
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1451-9372/2022/1451-93722100036A.pdf
Description
Summary:The use of micro components is increasing day by day in the industries such as aviation, power circuit boards, inkjet nozzle, and biomedical. Among various non-traditional micromachining methods, electrochemical micromachining (EMM) shows unique characteristics, such as no tool wear, no residual stress, and high accuracy. In this research, EMM is considered to study the effect of square-shaped stainless steel (SS) and aluminum metal matrix composite (AMC) tools on square hole generation. The significant process parameters, such as machining voltage, duty cycle, and aqueous sodium nitrate (NaNO3) electrolyte of varying concentrations, are considered for the study. The performances of the EMM process are evaluated in terms of machining rate (MR) and Overcut (OC). The AMC tool shows 43.22% lesser OC than the SS tool at the parameter combinations of 8 V, 85%, and 23 g/L. Also, the same parameter combination MR for the SS tool is 71.6% higher than the AMC tool. Field emission scanning electron microscope image (FESEM) analysis shows that the micro square hole generated using composite electrode shows micro-pits on the circumference of the square hole. The energy-dispersive X-ray spectroscopy (EDAX) analysis is conducted to verify the presence and distributions of reinforcement in the AMC tool.
ISSN:1451-9372
2217-7434