Mild solutions for perturbed evolution equations with infinite state-dependent delay

In this paper, we give sufficient conditions to get the existence of mild solutions for two classes of first order partial and neutral of perturbed evolution equations by using the nonlinear alternative of Avramescu for contractions operators in Fréchet spaces, combined with semigroup theory. The so...

Full description

Bibliographic Details
Main Authors: Djillali Aoued, Selma BAGHLI-BENDIMERAD
Format: Article
Language:English
Published: University of Szeged 2013-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2328
_version_ 1827951275080155136
author Djillali Aoued
Selma BAGHLI-BENDIMERAD
author_facet Djillali Aoued
Selma BAGHLI-BENDIMERAD
author_sort Djillali Aoued
collection DOAJ
description In this paper, we give sufficient conditions to get the existence of mild solutions for two classes of first order partial and neutral of perturbed evolution equations by using the nonlinear alternative of Avramescu for contractions operators in Fréchet spaces, combined with semigroup theory. The solution here is depending on an infinite delay and is giving on the real half-line.
first_indexed 2024-04-09T13:39:16Z
format Article
id doaj.art-43ad9eb24b0846218838bc6cbcce8be2
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:39:16Z
publishDate 2013-10-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-43ad9eb24b0846218838bc6cbcce8be22023-05-09T07:53:03ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752013-10-0120135912410.14232/ejqtde.2013.1.592328Mild solutions for perturbed evolution equations with infinite state-dependent delayDjillali Aoued0Selma BAGHLI-BENDIMERAD1Laboratoire de Mathématiques, Université de Sidi Bel-AbbèsUniversité de Sidi Bel Abbés, Sidi Bel Abbés, AlgérieIn this paper, we give sufficient conditions to get the existence of mild solutions for two classes of first order partial and neutral of perturbed evolution equations by using the nonlinear alternative of Avramescu for contractions operators in Fréchet spaces, combined with semigroup theory. The solution here is depending on an infinite delay and is giving on the real half-line.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2328perturbed semilinear functional equationsneutral problemmild solutionstate-dependent delayfixed pointnonlinear alternativesemigroup theoryfréchet spacesinfinite delay.
spellingShingle Djillali Aoued
Selma BAGHLI-BENDIMERAD
Mild solutions for perturbed evolution equations with infinite state-dependent delay
Electronic Journal of Qualitative Theory of Differential Equations
perturbed semilinear functional equations
neutral problem
mild solution
state-dependent delay
fixed point
nonlinear alternative
semigroup theory
fréchet spaces
infinite delay.
title Mild solutions for perturbed evolution equations with infinite state-dependent delay
title_full Mild solutions for perturbed evolution equations with infinite state-dependent delay
title_fullStr Mild solutions for perturbed evolution equations with infinite state-dependent delay
title_full_unstemmed Mild solutions for perturbed evolution equations with infinite state-dependent delay
title_short Mild solutions for perturbed evolution equations with infinite state-dependent delay
title_sort mild solutions for perturbed evolution equations with infinite state dependent delay
topic perturbed semilinear functional equations
neutral problem
mild solution
state-dependent delay
fixed point
nonlinear alternative
semigroup theory
fréchet spaces
infinite delay.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2328
work_keys_str_mv AT djillaliaoued mildsolutionsforperturbedevolutionequationswithinfinitestatedependentdelay
AT selmabaghlibendimerad mildsolutionsforperturbedevolutionequationswithinfinitestatedependentdelay