Mild solutions for perturbed evolution equations with infinite state-dependent delay
In this paper, we give sufficient conditions to get the existence of mild solutions for two classes of first order partial and neutral of perturbed evolution equations by using the nonlinear alternative of Avramescu for contractions operators in Fréchet spaces, combined with semigroup theory. The so...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2013-10-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2328 |
_version_ | 1827951275080155136 |
---|---|
author | Djillali Aoued Selma BAGHLI-BENDIMERAD |
author_facet | Djillali Aoued Selma BAGHLI-BENDIMERAD |
author_sort | Djillali Aoued |
collection | DOAJ |
description | In this paper, we give sufficient conditions to get the existence of mild solutions for two classes of first order partial and neutral of perturbed evolution equations by using the nonlinear alternative of Avramescu for contractions operators in Fréchet spaces, combined with semigroup theory. The solution here is depending on an infinite delay and is giving on the real half-line. |
first_indexed | 2024-04-09T13:39:16Z |
format | Article |
id | doaj.art-43ad9eb24b0846218838bc6cbcce8be2 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:39:16Z |
publishDate | 2013-10-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-43ad9eb24b0846218838bc6cbcce8be22023-05-09T07:53:03ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752013-10-0120135912410.14232/ejqtde.2013.1.592328Mild solutions for perturbed evolution equations with infinite state-dependent delayDjillali Aoued0Selma BAGHLI-BENDIMERAD1Laboratoire de Mathématiques, Université de Sidi Bel-AbbèsUniversité de Sidi Bel Abbés, Sidi Bel Abbés, AlgérieIn this paper, we give sufficient conditions to get the existence of mild solutions for two classes of first order partial and neutral of perturbed evolution equations by using the nonlinear alternative of Avramescu for contractions operators in Fréchet spaces, combined with semigroup theory. The solution here is depending on an infinite delay and is giving on the real half-line.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2328perturbed semilinear functional equationsneutral problemmild solutionstate-dependent delayfixed pointnonlinear alternativesemigroup theoryfréchet spacesinfinite delay. |
spellingShingle | Djillali Aoued Selma BAGHLI-BENDIMERAD Mild solutions for perturbed evolution equations with infinite state-dependent delay Electronic Journal of Qualitative Theory of Differential Equations perturbed semilinear functional equations neutral problem mild solution state-dependent delay fixed point nonlinear alternative semigroup theory fréchet spaces infinite delay. |
title | Mild solutions for perturbed evolution equations with infinite state-dependent delay |
title_full | Mild solutions for perturbed evolution equations with infinite state-dependent delay |
title_fullStr | Mild solutions for perturbed evolution equations with infinite state-dependent delay |
title_full_unstemmed | Mild solutions for perturbed evolution equations with infinite state-dependent delay |
title_short | Mild solutions for perturbed evolution equations with infinite state-dependent delay |
title_sort | mild solutions for perturbed evolution equations with infinite state dependent delay |
topic | perturbed semilinear functional equations neutral problem mild solution state-dependent delay fixed point nonlinear alternative semigroup theory fréchet spaces infinite delay. |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2328 |
work_keys_str_mv | AT djillaliaoued mildsolutionsforperturbedevolutionequationswithinfinitestatedependentdelay AT selmabaghlibendimerad mildsolutionsforperturbedevolutionequationswithinfinitestatedependentdelay |