Shear Bond Strength and Fluoride Release of a Universal Adhesive: An In-Vitro Study on Primary Teeth

This investigation aimed to assess the shear bond strength and fluoride-releasing capabilities of Clearfil Universal Bond Quick (Kuraray Noritake Dental Inc., Tokyo, Japan). Forty-four extracted primary molars were divided into two groups, and the enamel substrate was prepared for evaluating shear b...

Full description

Bibliographic Details
Main Authors: Alaa Alsaadawi, Osama Felemban, Hani M. Nassar, Medhat Abdelbaki
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/7/2573
Description
Summary:This investigation aimed to assess the shear bond strength and fluoride-releasing capabilities of Clearfil Universal Bond Quick (Kuraray Noritake Dental Inc., Tokyo, Japan). Forty-four extracted primary molars were divided into two groups, and the enamel substrate was prepared for evaluating shear bond strength. Scotchbond (3M ESPE) and Clearfil UBQ were used to bond composite-to-enamel substrates in each group (<i>n</i> = 22). Shear bond strength was measured using a universal testing device and compared. Sixteen discs (6 mm diameter and 3 mm thickness) were fabricated from each Clearfil UBQ, Fuji IX, and Fuji II LC. Over the course of 30 days, each materials’ fluoride release was examined and compared using ion analysis. Results revealed that Clearfil UBQ had statistically similar shear bond strength to Scotchbond. Between the three materials, Clearfil UBQ had the lowest fluoride release at baseline (0.11 ± 0.25) and the lowest cumulative fluoride release (0.12–0.27 ppm) over 30 days. Fuji IX had the highest fluoride release at baseline (19.38 ± 2.50) and cumulatively (40.87 ± 4.03 ppm), followed by Fuji II LC. We conclude that Clearfil UBQ and Scotchbond showed comparable bond strengths to the enamel. Fluoride release was seen in Clearfil UBQ in the initial two days of the 30-day period. The amount of fluoride release was significantly less than with glass ionomer cements.
ISSN:1996-1944