A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques

Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine...

Full description

Bibliographic Details
Main Authors: Qiwen Zhang, Xueke Tian, Guang Chen, Ze Yu, Xiaojian Zhang, Jingli Lu, Jinyuan Zhang, Peile Wang, Xin Hao, Yining Huang, Zeyuan Wang, Fei Gao, Jing Yang
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-05-01
Series:Frontiers in Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmed.2022.813117/full
_version_ 1818240190560337920
author Qiwen Zhang
Qiwen Zhang
Xueke Tian
Xueke Tian
Guang Chen
Guang Chen
Ze Yu
Xiaojian Zhang
Xiaojian Zhang
Jingli Lu
Jingli Lu
Jinyuan Zhang
Peile Wang
Peile Wang
Xin Hao
Yining Huang
Zeyuan Wang
Fei Gao
Jing Yang
Jing Yang
author_facet Qiwen Zhang
Qiwen Zhang
Xueke Tian
Xueke Tian
Guang Chen
Guang Chen
Ze Yu
Xiaojian Zhang
Xiaojian Zhang
Jingli Lu
Jingli Lu
Jinyuan Zhang
Peile Wang
Peile Wang
Xin Hao
Yining Huang
Zeyuan Wang
Fei Gao
Jing Yang
Jing Yang
author_sort Qiwen Zhang
collection DOAJ
description Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine learning and deep learning algorithms and establish individualized dose prediction models by using the best performing algorithm. Therefore, among the 10 commonly used algorithms we compared, the TabNet algorithm outperformed other algorithms with the highest R2 (0.824), the lowest prediction error [mean absolute error (MAE) 0.468, mean square error (MSE) 0.558, and root mean square error (RMSE) 0.745], and good performance of overestimated (5.29%) or underestimated dose percentage (8.52%). In the final prediction model, the last tacrolimus daily dose, the last tacrolimus therapeutic drug monitoring value, time after transplantation, hematocrit, serum creatinine, aspartate aminotransferase, weight, CYP3A5, body mass index, and uric acid were the most influential variables on tacrolimus daily dose. Our study provides a reference for the application of deep learning technique in tacrolimus dose estimation, and the TabNet model with desirable predictive performance is expected to be expanded and applied in future clinical practice.
first_indexed 2024-12-12T13:09:30Z
format Article
id doaj.art-43bbe06659384a4585a3c4989e9573f9
institution Directory Open Access Journal
issn 2296-858X
language English
last_indexed 2024-12-12T13:09:30Z
publishDate 2022-05-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Medicine
spelling doaj.art-43bbe06659384a4585a3c4989e9573f92022-12-22T00:23:33ZengFrontiers Media S.A.Frontiers in Medicine2296-858X2022-05-01910.3389/fmed.2022.813117813117A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning TechniquesQiwen Zhang0Qiwen Zhang1Xueke Tian2Xueke Tian3Guang Chen4Guang Chen5Ze Yu6Xiaojian Zhang7Xiaojian Zhang8Jingli Lu9Jingli Lu10Jinyuan Zhang11Peile Wang12Peile Wang13Xin Hao14Yining Huang15Zeyuan Wang16Fei Gao17Jing Yang18Jing Yang19Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaHenan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaHenan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaHenan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, ChinaBeijing Medicinovo Technology Co. Ltd, Beijing, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaHenan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaHenan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, ChinaBeijing Medicinovo Technology Co. Ltd, Beijing, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaHenan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, ChinaDalian Medicinovo Technology Co. Ltd, Dalian, ChinaMcCormick School of Engineering, Northwestern University, Evanston, IL, United StatesBeijing Medicinovo Technology Co. Ltd, Beijing, ChinaBeijing Medicinovo Technology Co. Ltd, Beijing, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, ChinaHenan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, ChinaTacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine learning and deep learning algorithms and establish individualized dose prediction models by using the best performing algorithm. Therefore, among the 10 commonly used algorithms we compared, the TabNet algorithm outperformed other algorithms with the highest R2 (0.824), the lowest prediction error [mean absolute error (MAE) 0.468, mean square error (MSE) 0.558, and root mean square error (RMSE) 0.745], and good performance of overestimated (5.29%) or underestimated dose percentage (8.52%). In the final prediction model, the last tacrolimus daily dose, the last tacrolimus therapeutic drug monitoring value, time after transplantation, hematocrit, serum creatinine, aspartate aminotransferase, weight, CYP3A5, body mass index, and uric acid were the most influential variables on tacrolimus daily dose. Our study provides a reference for the application of deep learning technique in tacrolimus dose estimation, and the TabNet model with desirable predictive performance is expected to be expanded and applied in future clinical practice.https://www.frontiersin.org/articles/10.3389/fmed.2022.813117/fullprediction modeltacrolimusdaily dosekidney transplantmachine learninggenetic polymorphism
spellingShingle Qiwen Zhang
Qiwen Zhang
Xueke Tian
Xueke Tian
Guang Chen
Guang Chen
Ze Yu
Xiaojian Zhang
Xiaojian Zhang
Jingli Lu
Jingli Lu
Jinyuan Zhang
Peile Wang
Peile Wang
Xin Hao
Yining Huang
Zeyuan Wang
Fei Gao
Jing Yang
Jing Yang
A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
Frontiers in Medicine
prediction model
tacrolimus
daily dose
kidney transplant
machine learning
genetic polymorphism
title A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_full A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_fullStr A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_full_unstemmed A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_short A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_sort prediction model for tacrolimus daily dose in kidney transplant recipients with machine learning and deep learning techniques
topic prediction model
tacrolimus
daily dose
kidney transplant
machine learning
genetic polymorphism
url https://www.frontiersin.org/articles/10.3389/fmed.2022.813117/full
work_keys_str_mv AT qiwenzhang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT qiwenzhang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xueketian apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xueketian apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT guangchen apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT guangchen apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zeyu apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xiaojianzhang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xiaojianzhang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jinglilu apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jinglilu apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jinyuanzhang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT peilewang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT peilewang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xinhao apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT yininghuang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zeyuanwang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT feigao apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jingyang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jingyang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT qiwenzhang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT qiwenzhang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xueketian predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xueketian predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT guangchen predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT guangchen predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zeyu predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xiaojianzhang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xiaojianzhang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jinglilu predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jinglilu predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jinyuanzhang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT peilewang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT peilewang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT xinhao predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT yininghuang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zeyuanwang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT feigao predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jingyang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT jingyang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques