Universal Sample Size Invariant Measures for Uncertainty Quantification in Density Estimation
Previously, we developed a high throughput non-parametric maximum entropy method (PLOS ONE, 13(5): e0196937, 2018) that employs a log-likelihood scoring function to characterize uncertainty in trial probability density estimates through a scaled quantile residual (SQR). The SQR for the true probabil...
Hlavní autoři: | Jenny Farmer, Zach Merino, Alexander Gray, Donald Jacobs |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2019-11-01
|
Edice: | Entropy |
Témata: | |
On-line přístup: | https://www.mdpi.com/1099-4300/21/11/1120 |
Podobné jednotky
-
Enhanced Robust Univariate Classification Methods for Solving Outliers and Overfitting Problems
Autor: Friday Zinzendoff Okwonu, a další
Vydáno: (2023-01-01) -
Interpretable Single-dimension Outlier Detection (ISOD): An Unsupervised Outlier Detection Method Based on Quantiles and Skewness Coefficients
Autor: Yuehua Huang, a další
Vydáno: (2023-12-01) -
Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
Autor: Jan Korbel
Vydáno: (2021-01-01) -
Testing the efficacy of downscaling in species distribution modelling: a comparison between MaxEnt and Favourability Function models
Autor: Olivero, J., a další
Vydáno: (2016-03-01) -
Unsupervised Outlier Detection via Transformation Invariant Autoencoder
Autor: Zhen Cheng, a další
Vydáno: (2021-01-01)