Universal Sample Size Invariant Measures for Uncertainty Quantification in Density Estimation
Previously, we developed a high throughput non-parametric maximum entropy method (PLOS ONE, 13(5): e0196937, 2018) that employs a log-likelihood scoring function to characterize uncertainty in trial probability density estimates through a scaled quantile residual (SQR). The SQR for the true probabil...
Main Authors: | Jenny Farmer, Zach Merino, Alexander Gray, Donald Jacobs |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado: |
MDPI AG
2019-11-01
|
Series: | Entropy |
Subjects: | |
Acceso en liña: | https://www.mdpi.com/1099-4300/21/11/1120 |
Títulos similares
-
Enhanced Robust Univariate Classification Methods for Solving Outliers and Overfitting Problems
por: Friday Zinzendoff Okwonu, et al.
Publicado: (2023-01-01) -
Interpretable Single-dimension Outlier Detection (ISOD): An Unsupervised Outlier Detection Method Based on Quantiles and Skewness Coefficients
por: Yuehua Huang, et al.
Publicado: (2023-12-01) -
Calibration Invariance of the MaxEnt Distribution in the Maximum Entropy Principle
por: Jan Korbel
Publicado: (2021-01-01) -
Testing the efficacy of downscaling in species distribution modelling: a comparison between MaxEnt and Favourability Function models
por: Olivero, J., et al.
Publicado: (2016-03-01) -
Unsupervised Outlier Detection via Transformation Invariant Autoencoder
por: Zhen Cheng, et al.
Publicado: (2021-01-01)