Asymptotic properties of the (convex) hyperspaces

It is  known that the hyperspaces of compact sets and compact convex set of the Euclidean space $\mathbb R^n$, $n\ge2$, both are homeomorphic to the puctured Hilbert cube. The main result of this note states that these hyperspaces are not coarsely equivalent.

Bibliographic Details
Main Authors: Mykhailo Zarichnyi, Mykhailo Romanskyi
Format: Article
Language:English
Published: Odesa National University of Technology 2020-02-01
Series:Pracì Mìžnarodnogo Geometričnogo Centru
Subjects:
Online Access:https://journals.onaft.edu.ua/index.php/geometry/article/view/1605
_version_ 1818524211455459328
author Mykhailo Zarichnyi
Mykhailo Romanskyi
author_facet Mykhailo Zarichnyi
Mykhailo Romanskyi
author_sort Mykhailo Zarichnyi
collection DOAJ
description It is  known that the hyperspaces of compact sets and compact convex set of the Euclidean space $\mathbb R^n$, $n\ge2$, both are homeomorphic to the puctured Hilbert cube. The main result of this note states that these hyperspaces are not coarsely equivalent.
first_indexed 2024-12-11T05:54:19Z
format Article
id doaj.art-43c771dbc9364cf5a4a377b36cf87d5d
institution Directory Open Access Journal
issn 2072-9812
2409-8906
language English
last_indexed 2024-12-11T05:54:19Z
publishDate 2020-02-01
publisher Odesa National University of Technology
record_format Article
series Pracì Mìžnarodnogo Geometričnogo Centru
spelling doaj.art-43c771dbc9364cf5a4a377b36cf87d5d2022-12-22T01:18:43ZengOdesa National University of TechnologyPracì Mìžnarodnogo Geometričnogo Centru2072-98122409-89062020-02-0183-4606410.15673/tmgc.v8i3-4.16051605Asymptotic properties of the (convex) hyperspacesMykhailo Zarichnyi0Mykhailo Romanskyi1Ivan Franko National University of LvivDrohobych State Pedagogical University of Ivan FrankoIt is  known that the hyperspaces of compact sets and compact convex set of the Euclidean space $\mathbb R^n$, $n\ge2$, both are homeomorphic to the puctured Hilbert cube. The main result of this note states that these hyperspaces are not coarsely equivalent.https://journals.onaft.edu.ua/index.php/geometry/article/view/1605hyperspace, convex set, coarse equivalence
spellingShingle Mykhailo Zarichnyi
Mykhailo Romanskyi
Asymptotic properties of the (convex) hyperspaces
Pracì Mìžnarodnogo Geometričnogo Centru
hyperspace, convex set, coarse equivalence
title Asymptotic properties of the (convex) hyperspaces
title_full Asymptotic properties of the (convex) hyperspaces
title_fullStr Asymptotic properties of the (convex) hyperspaces
title_full_unstemmed Asymptotic properties of the (convex) hyperspaces
title_short Asymptotic properties of the (convex) hyperspaces
title_sort asymptotic properties of the convex hyperspaces
topic hyperspace, convex set, coarse equivalence
url https://journals.onaft.edu.ua/index.php/geometry/article/view/1605
work_keys_str_mv AT mykhailozarichnyi asymptoticpropertiesoftheconvexhyperspaces
AT mykhailoromanskyi asymptoticpropertiesoftheconvexhyperspaces