Summary: | Cemented paste backfill (CPB) has become a significant structural material in most mines across the world. In this study, the effects of chemical rheological additives including viscosity modifying agent (i.e., polyacrylamide) and polycarboxylate superplasticizer (PCE) on fresh and hardened properties of CPB with different water-to-solid (W/S) ratios and water-to-cement (W/C) ratios were investigated. The microstructure of CPB specimens was also characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and backscattered electron image (SEM-BSE). The obtained results indicate that PAM (polyacrylamide) dosage and W/S are the most significant parameters influencing the workability of fresh CPB mixtures. For the hardened CPB specimens, the decreasing W/S ratio leads to higher flexural and compressive strength values and lower dry shrinkage strains. The interfacial transition zone (ITZ) between the cement matrix and the tailings sand was also observed to be narrower, with fewer micro cracks and capillary pores. Meanwhile, the existence of PAM decreased the number of hydration products and retarded the hydration reaction. Overall, the CPBs with high W/C ratios (i.e., 1.0 and 1.2), low W/S ratios (i.e., 0.3), and moderate amounts of rheological additives (i.e., 0.05% PAM and 1.0% PCE) have excellent fresh and hardened properties. The findings of this study contribute to better optimization of CPB mixtures in backfill construction, bringing benefits of low costs and low environmental impacts.
|