Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste b...

Full description

Bibliographic Details
Main Authors: Wei Sun, Aixiang Wu, Kepeng Hou, Yi Yang, Lei Liu, Yiming Wen
Format: Article
Language:English
Published: MDPI AG 2016-05-01
Series:Minerals
Subjects:
Online Access:http://www.mdpi.com/2075-163X/6/2/43
Description
Summary:The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50%) and cement dosages (1% and 2%) under damage. To this end, a real-time computed tomography (CT) scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength) increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.
ISSN:2075-163X