Enhanced magnetic moment with cobalt dopant in SnS2 semiconductor

We report the strong ferromagnetic order in van der Waals (vdW) layered SnS2 induced by cobalt substitution. The single-crystal Co-doped SnS2 grown by a self-flux method reveals a relatively high Curie temperature (TC) of ∼131 K with an in-plane magnetic easy axis and a large saturation magnetizatio...

Full description

Bibliographic Details
Main Authors: Houcine Bouzid, Steven Rodan, Kirandeep Singh, Youngjo Jin, Jinbao Jiang, Duhee Yoon, Hyun Yong Song, Young Hee Lee
Format: Article
Language:English
Published: AIP Publishing LLC 2021-05-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/5.0048885
Description
Summary:We report the strong ferromagnetic order in van der Waals (vdW) layered SnS2 induced by cobalt substitution. The single-crystal Co-doped SnS2 grown by a self-flux method reveals a relatively high Curie temperature (TC) of ∼131 K with an in-plane magnetic easy axis and a large saturation magnetization of ∼0.65 emu g−1 for the 2 at. % Co concentration, which is two orders of magnitude larger than the previously reported value for transition-metal-doped SnS2. The average magnetic moment per Co atom, as high as 1.08 µB, is consistent with the calculated value based on density functional theory, i.e., 1 µB, indicating a negligible antiferromagnetic coupling between Co atoms. Magnetoresistance shows a change in sign from positive to negative, which further confirms the ferromagnetic order in Co-doped SnS2. Our s-p hybridized vdW layered SnS2 serves as a host semiconductor material to search for a suitable magnetic dopant with a high magnetic moment and room temperature TC for next-generation spintronics.
ISSN:2166-532X