Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs

A <i>k</i>-labeling from the vertex set of a simple graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi>...

Full description

Bibliographic Details
Main Authors: Debi Oktia Haryeni, Zata Yumni Awanis, Martin Bača, Andrea Semaničová-Feňovčíková
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/12/2671
_version_ 1797455161806815232
author Debi Oktia Haryeni
Zata Yumni Awanis
Martin Bača
Andrea Semaničová-Feňovčíková
author_facet Debi Oktia Haryeni
Zata Yumni Awanis
Martin Bača
Andrea Semaničová-Feňovčíková
author_sort Debi Oktia Haryeni
collection DOAJ
description A <i>k</i>-labeling from the vertex set of a simple graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> to a set of integers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></semantics></math></inline-formula> is defined to be a modular edge irregular if, for every couple of distinct edges, their modular edge weights are distinct. The modular edge weight is the remainder of the division of the sum of end vertex labels by modulo <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></mrow></semantics></math></inline-formula>. The modular edge irregularity strength of a graph is known as the maximal vertex label <i>k</i>, minimized over all modular edge irregular <i>k</i>-labelings of the graph. In this paper we describe labeling schemes with symmetrical distribution of even and odd edge weights and investigate the existence of (modular) edge irregular labelings of joins of paths and cycles with isolated vertices. We estimate the bounds of the (modular) edge irregularity strength for the join graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mi>n</mi></msub><mo>+</mo><mover><msub><mi>K</mi><mi>m</mi></msub><mo>¯</mo></mover></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub><mo>+</mo><mover><msub><mi>K</mi><mi>m</mi></msub><mo>¯</mo></mover></mrow></semantics></math></inline-formula> and determine the corresponding exact value of the (modular) edge irregularity strength for some fan graphs and wheel graphs in order to prove the sharpness of the presented bounds.
first_indexed 2024-03-09T15:47:33Z
format Article
id doaj.art-43ea0c0ec8e5454ba6dd18b4eaa39de9
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T15:47:33Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-43ea0c0ec8e5454ba6dd18b4eaa39de92023-11-24T18:21:08ZengMDPI AGSymmetry2073-89942022-12-011412267110.3390/sym14122671Modular Version of Edge Irregularity Strength for Fan and Wheel GraphsDebi Oktia Haryeni0Zata Yumni Awanis1Martin Bača2Andrea Semaničová-Feňovčíková3Department of Mathematics, Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University, IPSC Area, Sentul, Bogor 16810, IndonesiaDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, University of Mataram, Jalan Majapahit No. 62, Mataram 83125, IndonesiaDepartment of Applied Mathematics and Informatics, Technical University, 042 00 Košice, SlovakiaDepartment of Applied Mathematics and Informatics, Technical University, 042 00 Košice, SlovakiaA <i>k</i>-labeling from the vertex set of a simple graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> to a set of integers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></semantics></math></inline-formula> is defined to be a modular edge irregular if, for every couple of distinct edges, their modular edge weights are distinct. The modular edge weight is the remainder of the division of the sum of end vertex labels by modulo <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></mrow></semantics></math></inline-formula>. The modular edge irregularity strength of a graph is known as the maximal vertex label <i>k</i>, minimized over all modular edge irregular <i>k</i>-labelings of the graph. In this paper we describe labeling schemes with symmetrical distribution of even and odd edge weights and investigate the existence of (modular) edge irregular labelings of joins of paths and cycles with isolated vertices. We estimate the bounds of the (modular) edge irregularity strength for the join graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mi>n</mi></msub><mo>+</mo><mover><msub><mi>K</mi><mi>m</mi></msub><mo>¯</mo></mover></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub><mo>+</mo><mover><msub><mi>K</mi><mi>m</mi></msub><mo>¯</mo></mover></mrow></semantics></math></inline-formula> and determine the corresponding exact value of the (modular) edge irregularity strength for some fan graphs and wheel graphs in order to prove the sharpness of the presented bounds.https://www.mdpi.com/2073-8994/14/12/2671(modular) irregular labelingirregularity strength(modular) edge irregular labeling(modular) edge irregularity strengthwheelfan graph
spellingShingle Debi Oktia Haryeni
Zata Yumni Awanis
Martin Bača
Andrea Semaničová-Feňovčíková
Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs
Symmetry
(modular) irregular labeling
irregularity strength
(modular) edge irregular labeling
(modular) edge irregularity strength
wheel
fan graph
title Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs
title_full Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs
title_fullStr Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs
title_full_unstemmed Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs
title_short Modular Version of Edge Irregularity Strength for Fan and Wheel Graphs
title_sort modular version of edge irregularity strength for fan and wheel graphs
topic (modular) irregular labeling
irregularity strength
(modular) edge irregular labeling
(modular) edge irregularity strength
wheel
fan graph
url https://www.mdpi.com/2073-8994/14/12/2671
work_keys_str_mv AT debioktiaharyeni modularversionofedgeirregularitystrengthforfanandwheelgraphs
AT zatayumniawanis modularversionofedgeirregularitystrengthforfanandwheelgraphs
AT martinbaca modularversionofedgeirregularitystrengthforfanandwheelgraphs
AT andreasemanicovafenovcikova modularversionofedgeirregularitystrengthforfanandwheelgraphs