Solvability of a free-boundary problem describing the traffic flows

We study a mathematical model of the vehicle traffic on straight freeways, which describes the traffic flow by means of equations of one-dimensional motion of the isobaric viscous gas. The corresponding free boundary problem is studied by means of introduction of Lagrangian coordinates, whic...

Full description

Bibliographic Details
Main Authors: Anvarbek Meirmanov, Sergey Shmarev, Akbota Senkebaeva
Format: Article
Language:English
Published: Texas State University 2015-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/74/abstr.html
Description
Summary:We study a mathematical model of the vehicle traffic on straight freeways, which describes the traffic flow by means of equations of one-dimensional motion of the isobaric viscous gas. The corresponding free boundary problem is studied by means of introduction of Lagrangian coordinates, which render the free boundary stationary. It is proved that the equivalent problem posed in a time-independent domain admits unique local and global in time classical solutions. The proof of the local in time existence is performed with standard methods, to prove the global in time existence the system is reduced to a system of two second-order quasilinear parabolic equations.
ISSN:1072-6691