Mean Inflection Point Distance: Artificial Intelligence Mapping Accuracy Evaluation Index—An Experimental Case Study of Building Extraction

Mapping is a fundamental application of remote sensing images, and the accurate evaluation of remote sensing image information extraction using artificial intelligence is critical. However, the existing evaluation method, based on Intersection over Union (IoU), is limited in evaluating the extracted...

Full description

Bibliographic Details
Main Authors: Ding Yu, Aihua Li, Jinrui Li, Yan Xu, Yinping Long
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/7/1848
Description
Summary:Mapping is a fundamental application of remote sensing images, and the accurate evaluation of remote sensing image information extraction using artificial intelligence is critical. However, the existing evaluation method, based on Intersection over Union (IoU), is limited in evaluating the extracted information’s boundary accuracy. It is insufficient for determining mapping accuracy. Furthermore, traditional remote sensing mapping methods struggle to match the inflection points encountered in artificial intelligence contour extraction. In order to address these issues, we propose the mean inflection point distance (MPD) as a new segmentation evaluation method. MPD can accurately calculate error values and solve the problem of multiple inflection points, which traditional remote sensing mapping cannot match. We tested three algorithms on the Vaihingen dataset: Mask R-CNN, Swin Transformer, and PointRend. The results show that MPD is highly sensitive to mapping accuracy, can calculate error values accurately, and is applicable for different scales of mapping accuracy while maintaining high visual consistency. This study helps to assess the accuracy of automatic mapping using remote sensing artificial intelligence.
ISSN:2072-4292