Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian

We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo>&l...

Full description

Bibliographic Details
Main Authors: Manuel Gadella, José Hernández-Muñoz, Luis Miguel Nieto, Carlos San Millán
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/2/350
Description
Summary:We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>d</mi><mn>2</mn></msup><mo>/</mo><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, that is, the one dimensional infinite square well. First of all, we classify these self-adjoint extensions in terms of several choices of the parameters determining each of the extensions. There are essentially two big groups of extensions. In one, the ground state has strictly positive energy. On the other, either the ground state has zero or negative energy. In the present paper, we show that each of the extensions belonging to the first group (energy of ground state strictly positive) has an infinite sequence of supersymmetric partners, such that the <i>ℓ</i>-th order partner differs in one energy level from both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>ℓ</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-th and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>ℓ</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-th order partners. In general, the eigenvalues for each of the self-adjoint extensions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>d</mi><mn>2</mn></msup><mo>/</mo><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> come from a transcendental equation and are all infinite. For the case under our study, we determine the eigenvalues, which are also infinite, all the extensions have a purely discrete spectrum, and their respective eigenfunctions for all of its <i>ℓ</i>-th supersymmetric partners of each extension.
ISSN:2073-8994