Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian

We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo>&l...

Full description

Bibliographic Details
Main Authors: Manuel Gadella, José Hernández-Muñoz, Luis Miguel Nieto, Carlos San Millán
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/2/350
_version_ 1797395697548394496
author Manuel Gadella
José Hernández-Muñoz
Luis Miguel Nieto
Carlos San Millán
author_facet Manuel Gadella
José Hernández-Muñoz
Luis Miguel Nieto
Carlos San Millán
author_sort Manuel Gadella
collection DOAJ
description We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>d</mi><mn>2</mn></msup><mo>/</mo><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, that is, the one dimensional infinite square well. First of all, we classify these self-adjoint extensions in terms of several choices of the parameters determining each of the extensions. There are essentially two big groups of extensions. In one, the ground state has strictly positive energy. On the other, either the ground state has zero or negative energy. In the present paper, we show that each of the extensions belonging to the first group (energy of ground state strictly positive) has an infinite sequence of supersymmetric partners, such that the <i>ℓ</i>-th order partner differs in one energy level from both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>ℓ</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-th and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>ℓ</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-th order partners. In general, the eigenvalues for each of the self-adjoint extensions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>d</mi><mn>2</mn></msup><mo>/</mo><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> come from a transcendental equation and are all infinite. For the case under our study, we determine the eigenvalues, which are also infinite, all the extensions have a purely discrete spectrum, and their respective eigenfunctions for all of its <i>ℓ</i>-th supersymmetric partners of each extension.
first_indexed 2024-03-09T00:39:15Z
format Article
id doaj.art-442e5d1549984dabb10b07b8ac31c2b3
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T00:39:15Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-442e5d1549984dabb10b07b8ac31c2b32023-12-11T17:54:52ZengMDPI AGSymmetry2073-89942021-02-0113235010.3390/sym13020350Supersymmetric Partners of the One-Dimensional Infinite Square Well HamiltonianManuel Gadella0José Hernández-Muñoz1Luis Miguel Nieto2Carlos San Millán3Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, 47011 Valladolid, SpainDepartamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, 28049 Madrid, SpainDepartamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, 47011 Valladolid, SpainDepartamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, 47011 Valladolid, SpainWe find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>d</mi><mn>2</mn></msup><mo>/</mo><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>[</mo><mo>−</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, that is, the one dimensional infinite square well. First of all, we classify these self-adjoint extensions in terms of several choices of the parameters determining each of the extensions. There are essentially two big groups of extensions. In one, the ground state has strictly positive energy. On the other, either the ground state has zero or negative energy. In the present paper, we show that each of the extensions belonging to the first group (energy of ground state strictly positive) has an infinite sequence of supersymmetric partners, such that the <i>ℓ</i>-th order partner differs in one energy level from both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>ℓ</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-th and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>ℓ</mo><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-th order partners. In general, the eigenvalues for each of the self-adjoint extensions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mi>d</mi><mn>2</mn></msup><mo>/</mo><mi>d</mi><msup><mi>x</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> come from a transcendental equation and are all infinite. For the case under our study, we determine the eigenvalues, which are also infinite, all the extensions have a purely discrete spectrum, and their respective eigenfunctions for all of its <i>ℓ</i>-th supersymmetric partners of each extension.https://www.mdpi.com/2073-8994/13/2/350supersymmetric quantum mechanicsself-adjoint extensionsinfinite square wellcontact potentials
spellingShingle Manuel Gadella
José Hernández-Muñoz
Luis Miguel Nieto
Carlos San Millán
Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
Symmetry
supersymmetric quantum mechanics
self-adjoint extensions
infinite square well
contact potentials
title Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
title_full Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
title_fullStr Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
title_full_unstemmed Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
title_short Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
title_sort supersymmetric partners of the one dimensional infinite square well hamiltonian
topic supersymmetric quantum mechanics
self-adjoint extensions
infinite square well
contact potentials
url https://www.mdpi.com/2073-8994/13/2/350
work_keys_str_mv AT manuelgadella supersymmetricpartnersoftheonedimensionalinfinitesquarewellhamiltonian
AT josehernandezmunoz supersymmetricpartnersoftheonedimensionalinfinitesquarewellhamiltonian
AT luismiguelnieto supersymmetricpartnersoftheonedimensionalinfinitesquarewellhamiltonian
AT carlossanmillan supersymmetricpartnersoftheonedimensionalinfinitesquarewellhamiltonian