Summary: | Therapy-related myeloid neoplasms (t-MN) are a late complication of cytotoxic therapy (CT) used in the treatment of both malignant and non-malignant diseases. Historically, t-MN has been considered to be a direct consequence of DNA damage induced in normal hematopoietic stem or progenitor cells (HSPC) by CT. However, we now know that treatment-induced mutations in HSC are not the only players involved in t-MN development but additional factors may contribute to the onset of t-MN.
One of the known drivers involved in this field is the bone marrow microenvironment (BMM) and in particular bone marrow mesenchymal stem cells (BM-MSC) whose role in t-MN pathogenesis is the topic of this mini-review.
BM-MSC, physiologically, support HSC maintenance, self-renewal, and differentiation, through hematopoietic–stromal interactions and production of cytokines. In addition, BM-MSC maintain the stability of the BM immune microenvironment and reduce the damage caused to HSC by stress stimuli.
In t-MN context, chemo/radio-therapy may induce damage to the BM-MSC and likewise alter BM-MSC functions by promoting pro-inflammatory response, clonal selection and/or the production of factors that may favor malignant hematopoiesis.
Over the last decade, it has been shown that BM-MSC isolated from patients with de novo and therapy-related MN exhibit decreased proliferative and clonogenic capacity, altered morphology, increased senescence, defective osteogenic differentiation potential, impaired immune-regulatory properties, and reduced ability to support HSC growth and differentiation, as compared to normal BM-MSC.
Although the understanding of the genetic and gene expression profile associated with ex vivo-expanded t-MN-MSCs remains limited and debatable, its potential role in prognostic and therapeutic terms is acting as a flywheel of attraction of many researchers.
|