Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation Analysis
Abstract Objective To evaluate the morphological asymmetry of pelvic rings existing in healthy individuals in terms of three‐dimensional (3D) geometric shapes. Methods This study was a retrospective self‐control study. CT images of healthy pelvises, scanned from Jan 2014 to Jan 2019, were taken from...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-05-01
|
Series: | Orthopaedic Surgery |
Subjects: | |
Online Access: | https://doi.org/10.1111/os.13246 |
_version_ | 1811307691294851072 |
---|---|
author | Fan Zhang Dengming Zhang Zhou Huang Zhizhong Wang Xianhua Cai |
author_facet | Fan Zhang Dengming Zhang Zhou Huang Zhizhong Wang Xianhua Cai |
author_sort | Fan Zhang |
collection | DOAJ |
description | Abstract Objective To evaluate the morphological asymmetry of pelvic rings existing in healthy individuals in terms of three‐dimensional (3D) geometric shapes. Methods This study was a retrospective self‐control study. CT images of healthy pelvises, scanned from Jan 2014 to Jan 2019, were taken from 159 subjects (88 males and 71 females) aged 20 to 59 years (39.1 ± 8.7 years). Digital pelvic ring models were reconstructed from CT images and then flipped over the corresponding sagittal planes to obtain their mirrored models. A 3D deviation analysis of a pelvic ring was conducted between the original model and its mirrored model via model registration and quantification of the geometric differences. Next, the pelvic rings were split to the left and right hipbones. The same flipping procedures as done by pelvic rings were performed for left hipbones to obtain their mirrored models. A 3D deviation analysis was also performed between the left and right hip bones. Quantitative variables representing deviation mainly included the average deviation (AD) and the maximum deviation (MD). MDs over 4 mm and 10 mm were deemed as critical levels for evaluating the severity of asymmetry as per Matta's scoring system. The quantitative assessments of the asymmetry covered pelvic rings, bilateral hip bones and the specific anatomic regions of a hip bone. Results 157 out of 159 pelvic rings (98.74%) had more than 4 mm of the MD and 27 (16.98%) of them exceeded 10 mm of the MD. The MD of pelvic rings was 1.23 times as high as that for the bilateral hip bones (7.46 mm vs. 6.08 mm, P < 0.05). The ADs of pelvic rings and bilateral hip bones were 1.28 mm and 0.94 mm, respectively (P < 0.05); 2.27% of the surface points of a pelvic ring had more than 4 mm geometric deviations compared with its mirrored model, while 0.59% (P < 0.05) of bilateral hip bones were on the same level of deviation. 119 out of 159 pelvic iliac crests (74.8%) had MDs more than 4 mm, and 15 (9.4%) reached 10 mm or more. Only 15 (9.4%) pelvises presented asymmetric features in the area of obturator foramen where the MDs exceeded 4 mm. Conclusions Pelvic asymmetry exists in the general population, but 3D geometric symmetry is present in specific anatomic regions. It implies that restoring the 3D symmetry of specific anatomic regions is more reliable than “restoring the symmetry of pelvic ring” in pelvic ring reduction or pelvic fixation design. |
first_indexed | 2024-04-13T09:08:43Z |
format | Article |
id | doaj.art-4440eeed3c164f77a2b7d536de2bf254 |
institution | Directory Open Access Journal |
issn | 1757-7853 1757-7861 |
language | English |
last_indexed | 2024-04-13T09:08:43Z |
publishDate | 2022-05-01 |
publisher | Wiley |
record_format | Article |
series | Orthopaedic Surgery |
spelling | doaj.art-4440eeed3c164f77a2b7d536de2bf2542022-12-22T02:52:55ZengWileyOrthopaedic Surgery1757-78531757-78612022-05-0114596797610.1111/os.13246Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation AnalysisFan Zhang0Dengming Zhang1Zhou Huang2Zhizhong Wang3Xianhua Cai4The First School of Clinical Medicine Southern Medical University Guangzhou ChinaDepartment of General Surgery Foshan Sanshui District People's Hospital Foshan City ChinaDepartment of Medical Imaging Foshan Sanshui District People's Hospital Foshan City ChinaDepartment of Orthopedics and Trauma Foshan Sanshui District People's Hospital Foshan City ChinaThe First School of Clinical Medicine Southern Medical University Guangzhou ChinaAbstract Objective To evaluate the morphological asymmetry of pelvic rings existing in healthy individuals in terms of three‐dimensional (3D) geometric shapes. Methods This study was a retrospective self‐control study. CT images of healthy pelvises, scanned from Jan 2014 to Jan 2019, were taken from 159 subjects (88 males and 71 females) aged 20 to 59 years (39.1 ± 8.7 years). Digital pelvic ring models were reconstructed from CT images and then flipped over the corresponding sagittal planes to obtain their mirrored models. A 3D deviation analysis of a pelvic ring was conducted between the original model and its mirrored model via model registration and quantification of the geometric differences. Next, the pelvic rings were split to the left and right hipbones. The same flipping procedures as done by pelvic rings were performed for left hipbones to obtain their mirrored models. A 3D deviation analysis was also performed between the left and right hip bones. Quantitative variables representing deviation mainly included the average deviation (AD) and the maximum deviation (MD). MDs over 4 mm and 10 mm were deemed as critical levels for evaluating the severity of asymmetry as per Matta's scoring system. The quantitative assessments of the asymmetry covered pelvic rings, bilateral hip bones and the specific anatomic regions of a hip bone. Results 157 out of 159 pelvic rings (98.74%) had more than 4 mm of the MD and 27 (16.98%) of them exceeded 10 mm of the MD. The MD of pelvic rings was 1.23 times as high as that for the bilateral hip bones (7.46 mm vs. 6.08 mm, P < 0.05). The ADs of pelvic rings and bilateral hip bones were 1.28 mm and 0.94 mm, respectively (P < 0.05); 2.27% of the surface points of a pelvic ring had more than 4 mm geometric deviations compared with its mirrored model, while 0.59% (P < 0.05) of bilateral hip bones were on the same level of deviation. 119 out of 159 pelvic iliac crests (74.8%) had MDs more than 4 mm, and 15 (9.4%) reached 10 mm or more. Only 15 (9.4%) pelvises presented asymmetric features in the area of obturator foramen where the MDs exceeded 4 mm. Conclusions Pelvic asymmetry exists in the general population, but 3D geometric symmetry is present in specific anatomic regions. It implies that restoring the 3D symmetry of specific anatomic regions is more reliable than “restoring the symmetry of pelvic ring” in pelvic ring reduction or pelvic fixation design.https://doi.org/10.1111/os.13246Deviation analysisPelvisSurgical planningThree‐dimensional models |
spellingShingle | Fan Zhang Dengming Zhang Zhou Huang Zhizhong Wang Xianhua Cai Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation Analysis Orthopaedic Surgery Deviation analysis Pelvis Surgical planning Three‐dimensional models |
title | Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation Analysis |
title_full | Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation Analysis |
title_fullStr | Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation Analysis |
title_full_unstemmed | Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation Analysis |
title_short | Morphological Asymmetry of Pelvic Rings: A Study Based on Three‐Dimensional Deviation Analysis |
title_sort | morphological asymmetry of pelvic rings a study based on three dimensional deviation analysis |
topic | Deviation analysis Pelvis Surgical planning Three‐dimensional models |
url | https://doi.org/10.1111/os.13246 |
work_keys_str_mv | AT fanzhang morphologicalasymmetryofpelvicringsastudybasedonthreedimensionaldeviationanalysis AT dengmingzhang morphologicalasymmetryofpelvicringsastudybasedonthreedimensionaldeviationanalysis AT zhouhuang morphologicalasymmetryofpelvicringsastudybasedonthreedimensionaldeviationanalysis AT zhizhongwang morphologicalasymmetryofpelvicringsastudybasedonthreedimensionaldeviationanalysis AT xianhuacai morphologicalasymmetryofpelvicringsastudybasedonthreedimensionaldeviationanalysis |