Optimal Algorithms for Sorting Permutations with Brooms

Sorting permutations with various operations has applications in genetics and computer interconnection networks where an operation is specified by its generator set. A transposition tree <inline-formula><math display="inline"><semantics><mrow><mi>T</mi>&...

Full description

Bibliographic Details
Main Authors: Indulekha Thekkethuruthel Sadanandan, Bhadrachalam Chitturi
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/15/7/220
_version_ 1827619284326547456
author Indulekha Thekkethuruthel Sadanandan
Bhadrachalam Chitturi
author_facet Indulekha Thekkethuruthel Sadanandan
Bhadrachalam Chitturi
author_sort Indulekha Thekkethuruthel Sadanandan
collection DOAJ
description Sorting permutations with various operations has applications in genetics and computer interconnection networks where an operation is specified by its generator set. A transposition tree <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a spanning tree over <i>n</i> vertices <inline-formula><math display="inline"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><msub><mi>v</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>. <i>T</i> denotes an operation in which each edge is a generator. A value assigned to a vertex is called a <i>token</i> or a <i>marker</i>. The markers on vertices <i>u</i> and <i>v</i> can be swapped only if the pair <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>∈</mo><mi>E</mi></mrow></semantics></math></inline-formula>. The initial configuration consists of a bijection from the set of vertices <inline-formula><math display="inline"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>v</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> to the set of markers <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The goal is to <i>sort</i> the initial configuration of <i>T</i>, i.e., an input permutation, by applying the minimum number of swaps or <i>moves</i> in <i>T</i>. Computationally tractable optimal algorithms to sort permutations are known only for a few classes of transposition trees. We study a class of transposition trees called a <i>broom</i> and its variation a <i>double broom</i>. A <i>single broom</i> is a tree obtained by joining the centre vertex of a star with one of the two leaf vertices of a path graph. A <i>double broom</i> is an extension of a single broom where the centre vertex of a second star is connected to the terminal vertex of the path in a single broom. We propose a simple and efficient algorithm to obtain an optimal swap sequence to sort permutations with the transposition tree broom and a novel optimal algorithm to sort permutations with a double broom. We also introduce a new class of trees named <i>millipede tree</i> and prove that <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>*</mo></msup></semantics></math></inline-formula> yields a tighter upper bound for sorting permutations with a balanced millipede tree compared to <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>′</mo></msup></semantics></math></inline-formula>. Algorithms <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>*</mo></msup></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>′</mo></msup></semantics></math></inline-formula> are designed previously.
first_indexed 2024-03-09T10:23:59Z
format Article
id doaj.art-444432336d374f0ba6f8dcb8376a42fd
institution Directory Open Access Journal
issn 1999-4893
language English
last_indexed 2024-03-09T10:23:59Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Algorithms
spelling doaj.art-444432336d374f0ba6f8dcb8376a42fd2023-12-01T21:46:38ZengMDPI AGAlgorithms1999-48932022-06-0115722010.3390/a15070220Optimal Algorithms for Sorting Permutations with BroomsIndulekha Thekkethuruthel Sadanandan0Bhadrachalam Chitturi1Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri 641112, IndiaDepartment of Computer Science, UT Dallas, Richardson, TX 75080, USASorting permutations with various operations has applications in genetics and computer interconnection networks where an operation is specified by its generator set. A transposition tree <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a spanning tree over <i>n</i> vertices <inline-formula><math display="inline"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><msub><mi>v</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>. <i>T</i> denotes an operation in which each edge is a generator. A value assigned to a vertex is called a <i>token</i> or a <i>marker</i>. The markers on vertices <i>u</i> and <i>v</i> can be swapped only if the pair <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>∈</mo><mi>E</mi></mrow></semantics></math></inline-formula>. The initial configuration consists of a bijection from the set of vertices <inline-formula><math display="inline"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>v</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> to the set of markers <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>. The goal is to <i>sort</i> the initial configuration of <i>T</i>, i.e., an input permutation, by applying the minimum number of swaps or <i>moves</i> in <i>T</i>. Computationally tractable optimal algorithms to sort permutations are known only for a few classes of transposition trees. We study a class of transposition trees called a <i>broom</i> and its variation a <i>double broom</i>. A <i>single broom</i> is a tree obtained by joining the centre vertex of a star with one of the two leaf vertices of a path graph. A <i>double broom</i> is an extension of a single broom where the centre vertex of a second star is connected to the terminal vertex of the path in a single broom. We propose a simple and efficient algorithm to obtain an optimal swap sequence to sort permutations with the transposition tree broom and a novel optimal algorithm to sort permutations with a double broom. We also introduce a new class of trees named <i>millipede tree</i> and prove that <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>*</mo></msup></semantics></math></inline-formula> yields a tighter upper bound for sorting permutations with a balanced millipede tree compared to <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>′</mo></msup></semantics></math></inline-formula>. Algorithms <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>*</mo></msup></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msup><mi>D</mi><mo>′</mo></msup></semantics></math></inline-formula> are designed previously.https://www.mdpi.com/1999-4893/15/7/220sorting permutationstransposition treespolynomial time algorithmsinterconnection networksbroomoptimal swap sequence
spellingShingle Indulekha Thekkethuruthel Sadanandan
Bhadrachalam Chitturi
Optimal Algorithms for Sorting Permutations with Brooms
Algorithms
sorting permutations
transposition trees
polynomial time algorithms
interconnection networks
broom
optimal swap sequence
title Optimal Algorithms for Sorting Permutations with Brooms
title_full Optimal Algorithms for Sorting Permutations with Brooms
title_fullStr Optimal Algorithms for Sorting Permutations with Brooms
title_full_unstemmed Optimal Algorithms for Sorting Permutations with Brooms
title_short Optimal Algorithms for Sorting Permutations with Brooms
title_sort optimal algorithms for sorting permutations with brooms
topic sorting permutations
transposition trees
polynomial time algorithms
interconnection networks
broom
optimal swap sequence
url https://www.mdpi.com/1999-4893/15/7/220
work_keys_str_mv AT indulekhathekkethuruthelsadanandan optimalalgorithmsforsortingpermutationswithbrooms
AT bhadrachalamchitturi optimalalgorithmsforsortingpermutationswithbrooms