Estimation of gross primary production of the Amazon-Cerrado transitional forest by remote sensing techniques

The gross primary production (GPP) of ecosystems is an important variable in the study of global climate change. Generally, the GPP has been estimated by micrometeorological techniques. However, these techniques have a high cost of implantation and maintenance, making the use of orbital sensor data...

Full description

Bibliographic Details
Main Authors: Maísa Caldas Souza, Marcelo Sacardi Biudes, Victor Hugo de Morais Danelichen, Nadja Gomes Machado, Carlo Ralph de Musis, George Louis Vourlitis, José de Souza Nogueira
Format: Article
Language:English
Published: Sociedade Brasileira de Meteorologia 2014-03-01
Series:Revista Brasileira de Meteorologia
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862014000100001&lng=en&tlng=en
Description
Summary:The gross primary production (GPP) of ecosystems is an important variable in the study of global climate change. Generally, the GPP has been estimated by micrometeorological techniques. However, these techniques have a high cost of implantation and maintenance, making the use of orbital sensor data an option to be evaluated. Thus, the objective of this study was to evaluate the potential of the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD17A2 product and the vegetation photosynthesis model (VPM) to predict the GPP of the Amazon-Cerrado transitional forest. The GPP predicted by MOD17A2 (GPP MODIS) and VPM (GPP VPM) were validated with the GPP estimated by eddy covariance (GPP EC). The GPP MODIS, GPP VPM and GPP EC have similar seasonality, with higher values in the wet season and lower in the dry season. However, the VPM performed was better than the MOD17A2 to estimate the GPP, due to use local climatic data for predict the light use efficiency, while the MOD17A2 use a global circulation model and the lookup table of each vegetation type to estimate the light use efficiency.
ISSN:1982-4351