Valley Zeeman effect and Landau levels in two-dimensional transition metal dichalcogenides

This paper presents a theoretical description of both the valley Zeeman effect (g-factors) and Landau levels in two-dimensional H-phase transition metal dichalcogenides (TMDs) using the Luttinger-Kohn approximation with spin-orbit coupling. At the valley extrema in TMDs, energy bands split into Land...

Full description

Bibliographic Details
Main Authors: Fengyuan Xuan, Su Ying Quek
Format: Article
Language:English
Published: American Physical Society 2020-08-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.2.033256
Description
Summary:This paper presents a theoretical description of both the valley Zeeman effect (g-factors) and Landau levels in two-dimensional H-phase transition metal dichalcogenides (TMDs) using the Luttinger-Kohn approximation with spin-orbit coupling. At the valley extrema in TMDs, energy bands split into Landau levels with a Zeeman shift in the presence of a uniform out-of-plane external magnetic field. The Landau level indices are symmetric in the K and K^{′} valleys. We develop a numerical approach to compute the single-band g-factors from first principles without the need for a sum over unoccupied bands. Many-body effects are included perturbatively within the GW approximation. Nonlocal exchange and correlation self-energy effects in the GW calculations increase the magnitude of single-band g-factors compared to those obtained from density functional theory. Our first-principles results give spin- and valley-split Landau levels, in agreement with recent optical experiments. The exciton g-factors deduced in this work are also in good agreement with experiment for the bright and dark excitons in monolayer WSe_{2}, as well as the lowest-energy bright excitons in MoSe_{2}-WSe_{2} heterobilayers with different twist angles.
ISSN:2643-1564