Summary: | Abstract Based on the counted power system emission factors of North China Power Grid, a community carbon emissions sample database is constructed. The support vector regression (SVR) model is trained to forecast the power carbon emissions, which is optimized by genetic algorithm (GA). A community carbon emission warning system is designed according the results. The dynamic emission coefficient curve of the power system is obtained by fitting the annual carbon emission coefficients. The time series SVR carbon emission prediction model is constructed, while the GA is improved to optimize its parameters. Taking Beijing Caochang Community as an example, a carbon emission sample database is generated based on the electricity consumption and emission coefficient curve to train and test the SVR model. The results show that the GA–SVR model fits well with the training set and the testing set, and the prediction accuracy of the testing set reaches 86%. In view of the training model in this paper, the carbon emission trend of community electricity consumption in the next month is predicted. The carbon emission warning system of the community is designed, and the specific strategy of community carbon emission reduction is proposed.
|