High-Performance Adaptive Neurofuzzy Classifier with a Parametric Tuning

The article is devoted to research and development of adaptive algorithms for neuro-fuzzy inference when solving multicriteria problems connected with analysis of expert (foresight) data to identify technological breakthroughs and strategic perspectives of scientific, technological and innovative de...

Full description

Bibliographic Details
Main Authors: Gorbachev Sergey, Syryamkin Vladimir
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201815501037
Description
Summary:The article is devoted to research and development of adaptive algorithms for neuro-fuzzy inference when solving multicriteria problems connected with analysis of expert (foresight) data to identify technological breakthroughs and strategic perspectives of scientific, technological and innovative development. The article describes the optimized structuralfunctional scheme of the high-performance adaptive neuro-fuzzy classifier with a logical output, which has such specific features as a block of decision tree-based fuzzy rules and a hybrid algorithm for neural network adaptation of parameters based on the error back-propagation to the root of the decision tree.
ISSN:2261-236X