Orthogonal and symplectic Yangians: Linear and quadratic evaluations

Orthogonal or symplectic Yangians are defined by the Yang–Baxter RLL relation involving the fundamental R matrix with so(n) or sp(2m) symmetry. Simple L operators with linear or quadratic dependence on the spectral parameter exist under restrictive conditions. These conditions are investigated in ge...

Full description

Bibliographic Details
Main Authors: D. Karakhanyan, R. Kirschner
Format: Article
Language:English
Published: Elsevier 2018-08-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321318301469
_version_ 1818158849888092160
author D. Karakhanyan
R. Kirschner
author_facet D. Karakhanyan
R. Kirschner
author_sort D. Karakhanyan
collection DOAJ
description Orthogonal or symplectic Yangians are defined by the Yang–Baxter RLL relation involving the fundamental R matrix with so(n) or sp(2m) symmetry. Simple L operators with linear or quadratic dependence on the spectral parameter exist under restrictive conditions. These conditions are investigated in general form.
first_indexed 2024-12-11T15:36:38Z
format Article
id doaj.art-448e3a7e55354385ae1edee44fccc71e
institution Directory Open Access Journal
issn 0550-3213
language English
last_indexed 2024-12-11T15:36:38Z
publishDate 2018-08-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj.art-448e3a7e55354385ae1edee44fccc71e2022-12-22T00:59:56ZengElsevierNuclear Physics B0550-32132018-08-019331439Orthogonal and symplectic Yangians: Linear and quadratic evaluationsD. Karakhanyan0R. Kirschner1Yerevan Physics Institute, 2 Alikhanyan br., 0036 Yerevan, ArmeniaInstitut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig, Germany; Corresponding author.Orthogonal or symplectic Yangians are defined by the Yang–Baxter RLL relation involving the fundamental R matrix with so(n) or sp(2m) symmetry. Simple L operators with linear or quadratic dependence on the spectral parameter exist under restrictive conditions. These conditions are investigated in general form.http://www.sciencedirect.com/science/article/pii/S0550321318301469
spellingShingle D. Karakhanyan
R. Kirschner
Orthogonal and symplectic Yangians: Linear and quadratic evaluations
Nuclear Physics B
title Orthogonal and symplectic Yangians: Linear and quadratic evaluations
title_full Orthogonal and symplectic Yangians: Linear and quadratic evaluations
title_fullStr Orthogonal and symplectic Yangians: Linear and quadratic evaluations
title_full_unstemmed Orthogonal and symplectic Yangians: Linear and quadratic evaluations
title_short Orthogonal and symplectic Yangians: Linear and quadratic evaluations
title_sort orthogonal and symplectic yangians linear and quadratic evaluations
url http://www.sciencedirect.com/science/article/pii/S0550321318301469
work_keys_str_mv AT dkarakhanyan orthogonalandsymplecticyangianslinearandquadraticevaluations
AT rkirschner orthogonalandsymplecticyangianslinearandquadraticevaluations