A Facile Synthesis of NiFe-Layered Double Hydroxide and Mixed Metal Oxide with Excellent Microwave Absorption Properties

Microwave-absorbing materials have attracted increased research interest in recent years because of their core roles in the fields of electromagnetic (EM) pollution precaution and information security. In this paper, microwave-absorbing material NiFe-layered double hydroxide (NiFe-LDH) was synthesiz...

Full description

Bibliographic Details
Main Authors: Yi Lu, Pingan Yang, Yanhong Li, Dandan Wen, Jiasai Luo, Shuhui Wang, Fang Wu, Liang Fang, Yu Pang
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/16/5046
Description
Summary:Microwave-absorbing materials have attracted increased research interest in recent years because of their core roles in the fields of electromagnetic (EM) pollution precaution and information security. In this paper, microwave-absorbing material NiFe-layered double hydroxide (NiFe-LDH) was synthesized by a simple co-precipitation method and calcined for the fabrication of NiFe-mixed metal oxide (NiFe-MMO). The phase structure and micromorphology of the NiFe-LDH and NiFe-MMO were analyzed, and their microwave-absorbing properties were investigated with a vector network analyzer in 2–18 GHz. Both NiFe-LDH and NiFe-MMO possessed abundant interfaces and a low dielectric constant, which were beneficial to electromagnetic wave absorption, owing to the synergistic effect of multi-relaxation and impedance matching. The optimum reflection loss (<i>RL</i>) of NiFe-LDH and NiFe-MMO was −58.8 dB and −64.4 dB, respectively, with the thickness of 4.0 mm in the C band. This work demonstrates that LDH-based materials have a potential application in electromagnetic wave absorption.
ISSN:1420-3049