Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model

The field-theoretic renormalization group is applied to a simple model of a random walk on a rough fluctuating surface. We consider the Fokker–Planck equation for a particle in a uniform gravitational field. The surface is modeled by the generalized Edwards–Wilkinson linear stochastic equation for t...

Full description

Bibliographic Details
Main Authors: Nikolay V. Antonov, Nikolay M. Gulitskiy, Polina I. Kakin, Dmitriy A. Kerbitskiy
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/9/3/139
_version_ 1797608755631751168
author Nikolay V. Antonov
Nikolay M. Gulitskiy
Polina I. Kakin
Dmitriy A. Kerbitskiy
author_facet Nikolay V. Antonov
Nikolay M. Gulitskiy
Polina I. Kakin
Dmitriy A. Kerbitskiy
author_sort Nikolay V. Antonov
collection DOAJ
description The field-theoretic renormalization group is applied to a simple model of a random walk on a rough fluctuating surface. We consider the Fokker–Planck equation for a particle in a uniform gravitational field. The surface is modeled by the generalized Edwards–Wilkinson linear stochastic equation for the height field. The full stochastic model is reformulated as a multiplicatively renormalizable field theory, which allows for the application of the standard renormalization theory. The renormalization group equations have several fixed points that correspond to possible scaling regimes in the infrared range (long times and large distances); all the critical dimensions are found exactly. As an example, the spreading law for the particle’s cloud is derived. It has the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≃</mo><msup><mi>t</mi><mrow><mn>2</mn><mo>/</mo><msub><mo>Δ</mo><mi>ω</mi></msub></mrow></msup></mrow></semantics></math></inline-formula> with the exactly known critical dimension of frequency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>ω</mi></msub></semantics></math></inline-formula> and, in general, differs from the standard expression <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≃</mo><mi>t</mi></mrow></semantics></math></inline-formula> for an ordinary random walk.
first_indexed 2024-03-11T05:47:57Z
format Article
id doaj.art-44a028dd4fce40128a54be84f501e740
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-11T05:47:57Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-44a028dd4fce40128a54be84f501e7402023-11-17T14:15:59ZengMDPI AGUniverse2218-19972023-03-019313910.3390/universe9030139Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple ModelNikolay V. Antonov0Nikolay M. Gulitskiy1Polina I. Kakin2Dmitriy A. Kerbitskiy3Department of Physics, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, RussiaDepartment of Physics, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, RussiaDepartment of Physics, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, RussiaDepartment of Physics, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, RussiaThe field-theoretic renormalization group is applied to a simple model of a random walk on a rough fluctuating surface. We consider the Fokker–Planck equation for a particle in a uniform gravitational field. The surface is modeled by the generalized Edwards–Wilkinson linear stochastic equation for the height field. The full stochastic model is reformulated as a multiplicatively renormalizable field theory, which allows for the application of the standard renormalization theory. The renormalization group equations have several fixed points that correspond to possible scaling regimes in the infrared range (long times and large distances); all the critical dimensions are found exactly. As an example, the spreading law for the particle’s cloud is derived. It has the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≃</mo><msup><mi>t</mi><mrow><mn>2</mn><mo>/</mo><msub><mo>Δ</mo><mi>ω</mi></msub></mrow></msup></mrow></semantics></math></inline-formula> with the exactly known critical dimension of frequency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>ω</mi></msub></semantics></math></inline-formula> and, in general, differs from the standard expression <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≃</mo><mi>t</mi></mrow></semantics></math></inline-formula> for an ordinary random walk.https://www.mdpi.com/2218-1997/9/3/139stochastic growthkinetic rougheningrandom walkrenormalization group
spellingShingle Nikolay V. Antonov
Nikolay M. Gulitskiy
Polina I. Kakin
Dmitriy A. Kerbitskiy
Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model
Universe
stochastic growth
kinetic roughening
random walk
renormalization group
title Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model
title_full Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model
title_fullStr Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model
title_full_unstemmed Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model
title_short Random Walk on a Rough Surface: Renormalization Group Analysis of a Simple Model
title_sort random walk on a rough surface renormalization group analysis of a simple model
topic stochastic growth
kinetic roughening
random walk
renormalization group
url https://www.mdpi.com/2218-1997/9/3/139
work_keys_str_mv AT nikolayvantonov randomwalkonaroughsurfacerenormalizationgroupanalysisofasimplemodel
AT nikolaymgulitskiy randomwalkonaroughsurfacerenormalizationgroupanalysisofasimplemodel
AT polinaikakin randomwalkonaroughsurfacerenormalizationgroupanalysisofasimplemodel
AT dmitriyakerbitskiy randomwalkonaroughsurfacerenormalizationgroupanalysisofasimplemodel