Study on properties of ultra-low dielectric loss mPPO/MTCLT composites prepared by injection molding

A novel category of polyphenylene oxide/high-impact polystyrene (PPO/HIPS) alloy was used as the polymer matrix (abbreviated as mPPO) and loaded with different volume fractions (0, 10, 20, 30, 40, 50 vol.%) of MgTiO3–Ca[Formula: see text]La[Formula: see text]TiO3 (abbreviated as MTCLT) ceramics to p...

Full description

Bibliographic Details
Main Authors: Yahan Liu, Haiyi Peng, Xiaogang Yao, Minmin Mao, Kaixin Song, Huixing Lin
Format: Article
Language:English
Published: World Scientific Publishing 2022-06-01
Series:Journal of Advanced Dielectrics
Subjects:
Online Access:https://www.worldscientific.com/doi/10.1142/S2010135X22500047
Description
Summary:A novel category of polyphenylene oxide/high-impact polystyrene (PPO/HIPS) alloy was used as the polymer matrix (abbreviated as mPPO) and loaded with different volume fractions (0, 10, 20, 30, 40, 50 vol.%) of MgTiO3–Ca[Formula: see text]La[Formula: see text]TiO3 (abbreviated as MTCLT) ceramics to prepare composites by injection molding. Its micromorphology, density, dielectric, thermal and mechanical properties were analyzed in detail. The experimental results show that the composites possess a compact microstructure because HIPS increases the fluidity of PPO. Due to the excellent dielectric properties of both mPPO and MTCLT, the composites have an extremely low dielectric loss. The realization of the high ceramic filler fraction greatly limits the thermal expansion of the polymer chain by introducing the interphase, so that the coefficient of thermal expansion of the composite material could be as low as 21.8 ppm/[Formula: see text]C. At the same time, the presence of ceramic particles could reinforce the mechanical property of the composites. When the ceramic filler fraction is higher than 20 vol.%, the bending strength of the composite material is around 110 MPa. When the ceramic filler fraction is 40 vol.%, the composite possesses the best comprehensive performance. The dielectric constant is 6.81, the dielectric loss is 0.00104, the thermal expansion coefficient is as low as 25.3 ppm/[Formula: see text]C, and the bending strength is 110.4 MPa. Due to its excellent properties, this material can be a good candidate in the field of microwave communication.
ISSN:2010-135X
2010-1368