SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology

Abstract Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are availab...

Full description

Bibliographic Details
Main Authors: Alexander Mühlberg, Paul Ritter, Simon Langer, Chloë Goossens, Stefanie Nübler, Dominik Schneidereit, Oliver Taubmann, Felix Denzinger, Dominik Nörenberg, Michael Haug, Sebastian Schürmann, Roarke Horstmeyer, Andreas K. Maier, Wolfgang H. Goldmann, Oliver Friedrich, Lucas Kreiss
Format: Article
Language:English
Published: Wiley 2023-10-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202206319
_version_ 1797663860961837056
author Alexander Mühlberg
Paul Ritter
Simon Langer
Chloë Goossens
Stefanie Nübler
Dominik Schneidereit
Oliver Taubmann
Felix Denzinger
Dominik Nörenberg
Michael Haug
Sebastian Schürmann
Roarke Horstmeyer
Andreas K. Maier
Wolfgang H. Goldmann
Oliver Friedrich
Lucas Kreiss
author_facet Alexander Mühlberg
Paul Ritter
Simon Langer
Chloë Goossens
Stefanie Nübler
Dominik Schneidereit
Oliver Taubmann
Felix Denzinger
Dominik Nörenberg
Michael Haug
Sebastian Schürmann
Roarke Horstmeyer
Andreas K. Maier
Wolfgang H. Goldmann
Oliver Friedrich
Lucas Kreiss
author_sort Alexander Mühlberg
collection DOAJ
description Abstract Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches.
first_indexed 2024-03-11T19:21:59Z
format Article
id doaj.art-44bff05520d54a82863b2dbf105f2848
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-03-11T19:21:59Z
publishDate 2023-10-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-44bff05520d54a82863b2dbf105f28482023-10-07T03:51:50ZengWileyAdvanced Science2198-38442023-10-011028n/an/a10.1002/advs.202206319SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and PathologyAlexander Mühlberg0Paul Ritter1Simon Langer2Chloë Goossens3Stefanie Nübler4Dominik Schneidereit5Oliver Taubmann6Felix Denzinger7Dominik Nörenberg8Michael Haug9Sebastian Schürmann10Roarke Horstmeyer11Andreas K. Maier12Wolfgang H. Goldmann13Oliver Friedrich14Lucas Kreiss15Institute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyInstitute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyPattern Recognition Lab Department of Computer Science Friedrich‐Alexander University Erlangen‐Nuremberg Martensstr. 3 91058 Erlangen GermanyClinical Division and Laboratory of Intensive Care Medicine KU Leuven UZ Herestraat 49 – P.O. box 7003 Leuven 3000 BelgiumInstitute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyInstitute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyPattern Recognition Lab Department of Computer Science Friedrich‐Alexander University Erlangen‐Nuremberg Martensstr. 3 91058 Erlangen GermanyPattern Recognition Lab Department of Computer Science Friedrich‐Alexander University Erlangen‐Nuremberg Martensstr. 3 91058 Erlangen GermanyDepartment of Radiology and Nuclear Medicine University Medical Center Mannheim Medical Faculty Mannheim Theodor‐Kutzer‐Ufer 1–3 68167 Mannheim GermanyInstitute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyInstitute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyComputational Optics Lab Department of Biomedical Engineering Duke University 101 Science Dr Durham NC 27708 USAPattern Recognition Lab Department of Computer Science Friedrich‐Alexander University Erlangen‐Nuremberg Martensstr. 3 91058 Erlangen GermanyBiophysics Group Department of Physics Friedrich‐Alexander University Erlangen‐Nuremberg Henkestr. 91 91052 Erlangen GermanyInstitute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyInstitute of Medical Biotechnology Department of Chemical and Biological Engineering Friedrich‐Alexander University Erlangen‐Nuremberg Paul‐Gordan‐Str. 3 91052 Erlangen GermanyAbstract Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis‐driven and extensive prior knowledge (priors) exists. To address this, the Self‐Enhancing Multi‐Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)‐based laboratory research is presented. It utilizes meta‐learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi‐task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state‐of‐the‐art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior‐only approaches.https://doi.org/10.1002/advs.202206319deep learningexplainable artificial intelligencemeta‐learningmultiphoton microscopymuscle researchprior information integration
spellingShingle Alexander Mühlberg
Paul Ritter
Simon Langer
Chloë Goossens
Stefanie Nübler
Dominik Schneidereit
Oliver Taubmann
Felix Denzinger
Dominik Nörenberg
Michael Haug
Sebastian Schürmann
Roarke Horstmeyer
Andreas K. Maier
Wolfgang H. Goldmann
Oliver Friedrich
Lucas Kreiss
SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
Advanced Science
deep learning
explainable artificial intelligence
meta‐learning
multiphoton microscopy
muscle research
prior information integration
title SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_full SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_fullStr SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_full_unstemmed SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_short SEMPAI: a Self‐Enhancing Multi‐Photon Artificial Intelligence for Prior‐Informed Assessment of Muscle Function and Pathology
title_sort sempai a self enhancing multi photon artificial intelligence for prior informed assessment of muscle function and pathology
topic deep learning
explainable artificial intelligence
meta‐learning
multiphoton microscopy
muscle research
prior information integration
url https://doi.org/10.1002/advs.202206319
work_keys_str_mv AT alexandermuhlberg sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT paulritter sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT simonlanger sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT chloegoossens sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT stefanienubler sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT dominikschneidereit sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT olivertaubmann sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT felixdenzinger sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT dominiknorenberg sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT michaelhaug sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT sebastianschurmann sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT roarkehorstmeyer sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT andreaskmaier sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT wolfganghgoldmann sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT oliverfriedrich sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology
AT lucaskreiss sempaiaselfenhancingmultiphotonartificialintelligenceforpriorinformedassessmentofmusclefunctionandpathology