Nonlinear ( m , ∞ ) $(m,\infty )$ -isometries and ( m , ∞ ) $(m,\infty )$ -expansive (contractive) mappings on normed spaces

Abstract Let S be a self-mapping on a normed space X ${\mathcal{X}}$ . In this paper, we introduce three new classes of mappings satisfying the following conditions: max 0 ≤ k ≤ m k  even ∥ S k x − S k y ∥ = max 0 ≤ k ≤ m k  odd ∥ S k x − S k y ∥ , max 0 ≤ k ≤ m k  even ∥ S k x − S k y ∥ ≤ max 0 ≤ k...

Full description

Bibliographic Details
Main Author: Aydah Mohammed Ayed Al-Ahmadi
Format: Article
Language:English
Published: SpringerOpen 2021-05-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-021-02607-w
Description
Summary:Abstract Let S be a self-mapping on a normed space X ${\mathcal{X}}$ . In this paper, we introduce three new classes of mappings satisfying the following conditions: max 0 ≤ k ≤ m k  even ∥ S k x − S k y ∥ = max 0 ≤ k ≤ m k  odd ∥ S k x − S k y ∥ , max 0 ≤ k ≤ m k  even ∥ S k x − S k y ∥ ≤ max 0 ≤ k ≤ m k  odd ∥ S k x − S k y ∥ , max 0 ≤ k ≤ m k  even ∥ S k x − S k y ∥ ≥ max 0 ≤ k ≤ m k  odd ∥ S k x − S k y ∥ , $$\begin{aligned} & \max_{ \substack{ 0\leq k \leq m \\ k \text{ even} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert =\max_{ \substack{ 0\leq k\leq m \\ k \text{ odd} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert , \\ & \max_{ \substack{ 0\leq k \leq m \\ k \text{ even} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert \leq \max_{ \substack{ 0\leq k\leq m \\ k \text{ odd} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert , \\ & \max_{ \substack{ 0\leq k \leq m \\ k \text{ even} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert \geq \max_{ \substack{ 0\leq k\leq m \\ k \text{ odd} } } \bigl\Vert S^{k}x-S^{k}y \bigr\Vert , \end{aligned}$$ for all x , y ∈ X $x,y\in {\mathcal{X}}$ , where m is a positive integer. We prove some properties of these classes of mappings.
ISSN:1029-242X