Improved Hybrid Parameters Extraction of a PV Module Using a Moth Flame Algorithm

The identification of actual photovoltaic (PV) model parameters under real operating condition is a crucial step for PV engineering. An accurate and trusted model depends mainly on the accuracy of the model parameters. In this paper, an accurate and enhanced methodology is intended for PV module par...

Full description

Bibliographic Details
Main Authors: Safi Allah Hamadi, Aissa Chouder, Mohamed Mounir Rezaoui, Saad Motahhir, Ameur Miloud Kaddouri
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/22/2798
Description
Summary:The identification of actual photovoltaic (PV) model parameters under real operating condition is a crucial step for PV engineering. An accurate and trusted model depends mainly on the accuracy of the model parameters. In this paper, an accurate and enhanced methodology is intended for PV module parameters extraction in outdoor conditions. The proposed methodology combines numerical methods and analytical formulations of the one diode model to derive the five unknown parameters in any operating condition of irradiance and temperature. First, the measured I-V curves at a random weather condition are translated to standard test conditions (i.e., G = 1000 W/m<sup>2</sup>, T = 25 °C), using translation equations. The second step consists of using an optimization algorithm namely the moth flame algorithm (MFO) to find out the five parameters at standard test conditions. Analytical formulations, at a random irradiance and temperature, are then used to express the unknown parameters at any irradiance and temperature. The proposed approach is validated under outdoor conditions against measured I-V curves at different irradiances and temperatures. The validation has also been performed under dynamic operation where the measured maximum power point coordinates (MPP) are compared to the predicted maximum power points. The obtained results from the adopted hybrid methodology confirm the accuracy of the parameter extraction procedure.
ISSN:2079-9292