Age-related Changes in Inter-Network Connectivity by Component Analysis
Healthy aging is associated with brain changes that reflect an alteration to a functional unit in response to the available resources and architecture. Even before the onset of noticeable cognitive decline, the neural scaffolds underlying cognitive function undergo considerable change. Prior studies...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-12-01
|
Series: | Frontiers in Aging Neuroscience |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fnagi.2015.00237/full |
_version_ | 1818062769329537024 |
---|---|
author | Christian eLa Pouria eMossahebi Veena A Nair Barbara B Bendlin Rasmus eBirn Rasmus eBirn Mary E Meyerand Mary E Meyerand Vivek ePrabhakaran Vivek ePrabhakaran |
author_facet | Christian eLa Pouria eMossahebi Veena A Nair Barbara B Bendlin Rasmus eBirn Rasmus eBirn Mary E Meyerand Mary E Meyerand Vivek ePrabhakaran Vivek ePrabhakaran |
author_sort | Christian eLa |
collection | DOAJ |
description | Healthy aging is associated with brain changes that reflect an alteration to a functional unit in response to the available resources and architecture. Even before the onset of noticeable cognitive decline, the neural scaffolds underlying cognitive function undergo considerable change. Prior studies have suggested a disruption of the connectivity pattern within the default-mode network (DMN), and more specifically a disruption of the anterio-posterior connectivity. In this study, we explored the effects of aging on within-network connectivity of three DMN subnetworks: a posterior DMN (pDMN), an anterior DMN (aDMN), and a ventral DMN (vDMN); as well as between-network connectivity during resting-state. Using groupICA on 43 young and 43 older healthy adults, we showed a reduction of network co-activation in two of the DMN subnetworks (pDMN and aDMN) and demonstrated a difference in between-component connectivity levels. The older group exhibited more numerous high-correlation pairs (Pearson’s rho>0.3, # of comp-pairs = 46) in comparison to the young group (# of comp-pairs = 34), suggesting a more connected/less segregated cortical system. Moreover, three component-pairs exhibited statistically significant differences between the two populations. Visual areas V2-V1 and V2-V4 were more correlated in the older adults, while aDMN-pDMN correlation decreased with aging. The increase in the number of high-correlation component-pairs and the elevated correlation in the visual areas are consistent with the prior hypothesis that aging is associated with a reduction of functional segregation. However, the aDMN-pDMN dis-connectivity may be occurring under a different mechanism, a mechanism more related to a breakdown of structural integrity along the anterio-posterior axis. |
first_indexed | 2024-12-10T14:09:28Z |
format | Article |
id | doaj.art-44c5d0f1bcc449e198645abd52288e36 |
institution | Directory Open Access Journal |
issn | 1663-4365 |
language | English |
last_indexed | 2024-12-10T14:09:28Z |
publishDate | 2015-12-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Aging Neuroscience |
spelling | doaj.art-44c5d0f1bcc449e198645abd52288e362022-12-22T01:45:33ZengFrontiers Media S.A.Frontiers in Aging Neuroscience1663-43652015-12-01710.3389/fnagi.2015.00237168398Age-related Changes in Inter-Network Connectivity by Component AnalysisChristian eLa0Pouria eMossahebi1Veena A Nair2Barbara B Bendlin3Rasmus eBirn4Rasmus eBirn5Mary E Meyerand6Mary E Meyerand7Vivek ePrabhakaran8Vivek ePrabhakaran9University of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonUniversity of Wisconsin - MadisonHealthy aging is associated with brain changes that reflect an alteration to a functional unit in response to the available resources and architecture. Even before the onset of noticeable cognitive decline, the neural scaffolds underlying cognitive function undergo considerable change. Prior studies have suggested a disruption of the connectivity pattern within the default-mode network (DMN), and more specifically a disruption of the anterio-posterior connectivity. In this study, we explored the effects of aging on within-network connectivity of three DMN subnetworks: a posterior DMN (pDMN), an anterior DMN (aDMN), and a ventral DMN (vDMN); as well as between-network connectivity during resting-state. Using groupICA on 43 young and 43 older healthy adults, we showed a reduction of network co-activation in two of the DMN subnetworks (pDMN and aDMN) and demonstrated a difference in between-component connectivity levels. The older group exhibited more numerous high-correlation pairs (Pearson’s rho>0.3, # of comp-pairs = 46) in comparison to the young group (# of comp-pairs = 34), suggesting a more connected/less segregated cortical system. Moreover, three component-pairs exhibited statistically significant differences between the two populations. Visual areas V2-V1 and V2-V4 were more correlated in the older adults, while aDMN-pDMN correlation decreased with aging. The increase in the number of high-correlation component-pairs and the elevated correlation in the visual areas are consistent with the prior hypothesis that aging is associated with a reduction of functional segregation. However, the aDMN-pDMN dis-connectivity may be occurring under a different mechanism, a mechanism more related to a breakdown of structural integrity along the anterio-posterior axis.http://journal.frontiersin.org/Journal/10.3389/fnagi.2015.00237/fullAgingfMRIfunctional connectivityICAdefault-mode Networkdedifferentiation |
spellingShingle | Christian eLa Pouria eMossahebi Veena A Nair Barbara B Bendlin Rasmus eBirn Rasmus eBirn Mary E Meyerand Mary E Meyerand Vivek ePrabhakaran Vivek ePrabhakaran Age-related Changes in Inter-Network Connectivity by Component Analysis Frontiers in Aging Neuroscience Aging fMRI functional connectivity ICA default-mode Network dedifferentiation |
title | Age-related Changes in Inter-Network Connectivity by Component Analysis |
title_full | Age-related Changes in Inter-Network Connectivity by Component Analysis |
title_fullStr | Age-related Changes in Inter-Network Connectivity by Component Analysis |
title_full_unstemmed | Age-related Changes in Inter-Network Connectivity by Component Analysis |
title_short | Age-related Changes in Inter-Network Connectivity by Component Analysis |
title_sort | age related changes in inter network connectivity by component analysis |
topic | Aging fMRI functional connectivity ICA default-mode Network dedifferentiation |
url | http://journal.frontiersin.org/Journal/10.3389/fnagi.2015.00237/full |
work_keys_str_mv | AT christianela agerelatedchangesininternetworkconnectivitybycomponentanalysis AT pouriaemossahebi agerelatedchangesininternetworkconnectivitybycomponentanalysis AT veenaanair agerelatedchangesininternetworkconnectivitybycomponentanalysis AT barbarabbendlin agerelatedchangesininternetworkconnectivitybycomponentanalysis AT rasmusebirn agerelatedchangesininternetworkconnectivitybycomponentanalysis AT rasmusebirn agerelatedchangesininternetworkconnectivitybycomponentanalysis AT maryemeyerand agerelatedchangesininternetworkconnectivitybycomponentanalysis AT maryemeyerand agerelatedchangesininternetworkconnectivitybycomponentanalysis AT vivekeprabhakaran agerelatedchangesininternetworkconnectivitybycomponentanalysis AT vivekeprabhakaran agerelatedchangesininternetworkconnectivitybycomponentanalysis |