Predicting porosity, permeability, and tortuosity of porous media from images by deep learning

Abstract Convolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ( $$\varphi$$ φ ), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered....

Full description

Bibliographic Details
Main Authors: Krzysztof M. Graczyk, Maciej Matyka
Format: Article
Language:English
Published: Nature Portfolio 2020-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-020-78415-x
Description
Summary:Abstract Convolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ( $$\varphi$$ φ ), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered. The fluid flow through a porous medium is simulated with the lattice Boltzmann method. The analysis has been performed for the systems with $$\varphi \in (0.37,0.99)$$ φ ∈ ( 0.37 , 0.99 ) which covers five orders of magnitude a span for permeability $$k \in (0.78, 2.1\times 10^5)$$ k ∈ ( 0.78 , 2.1 × 10 5 ) and tortuosity $$T \in (1.03,2.74)$$ T ∈ ( 1.03 , 2.74 ) . It is shown that the CNNs can be used to predict the porosity, permeability, and tortuosity with good accuracy. With the usage of the CNN models, the relation between T and $$\varphi$$ φ has been obtained and compared with the empirical estimate.
ISSN:2045-2322