Recent Efforts in Modeling and Simulation of Textiles
In many textiles and fiber structures, the behavior of the material is determined by the structural arrangements of the fibers, their thickness and cross-section, as well as their material properties. Textiles are thin plates made of thin long yarns in frictional contact with each other that are con...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Textiles |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-7248/1/2/16 |
_version_ | 1797513054499373056 |
---|---|
author | Julia Orlik Maxime Krier David Neusius Kathrin Pietsch Olena Sivak Konrad Steiner |
author_facet | Julia Orlik Maxime Krier David Neusius Kathrin Pietsch Olena Sivak Konrad Steiner |
author_sort | Julia Orlik |
collection | DOAJ |
description | In many textiles and fiber structures, the behavior of the material is determined by the structural arrangements of the fibers, their thickness and cross-section, as well as their material properties. Textiles are thin plates made of thin long yarns in frictional contact with each other that are connected via a rule defined by a looping diagram. The yarns themselves are stretchable or non-stretchable. All these structural parameters of a textile define its macroscopic behavior. Its folding is determined by all these parameters and the kind of the boundary fixation or loading direction. The next influencing characteristic is the value of the loading. The same textile can behave similar to a shell and work just for bending, or behave as a membrane with large tension deformations under different magnitudes of the loading forces. In our research, bounds on the loading and frictional parameters for both types of behavior are found. Additionally, algorithms for the computation of effective textile properties based on the structural information are proposed. Further focus of our research is the nature of folding, induced by pre-strain in yarns and some in-plane restriction of the textile movements, or by the local knitting or weaving pattern and the yarn’s cross-sections. Further investigations concern different applications with spacer fabrics. Structural parameters influencing the macroscopic fabric behavior are investigated and a way for optimization is proposed. An overview of our published mathematical and numerical papers with developed algorithms is given and our numerical tools based on these theoretical results are demonstrated. |
first_indexed | 2024-03-10T06:10:19Z |
format | Article |
id | doaj.art-44ce5584ad8d44c8b4ac0065736abf4f |
institution | Directory Open Access Journal |
issn | 2673-7248 |
language | English |
last_indexed | 2024-03-10T06:10:19Z |
publishDate | 2021-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Textiles |
spelling | doaj.art-44ce5584ad8d44c8b4ac0065736abf4f2023-11-22T20:12:01ZengMDPI AGTextiles2673-72482021-08-011232233610.3390/textiles1020016Recent Efforts in Modeling and Simulation of TextilesJulia Orlik0Maxime Krier1David Neusius2Kathrin Pietsch3Olena Sivak4Konrad Steiner5Fraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, 67663 Kaiserslautern, GermanyFraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, 67663 Kaiserslautern, GermanyFraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, 67663 Kaiserslautern, GermanyTextilinstitut ITM, University of Dresden, 01069 Dresden, GermanyFraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, 67663 Kaiserslautern, GermanyFraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, 67663 Kaiserslautern, GermanyIn many textiles and fiber structures, the behavior of the material is determined by the structural arrangements of the fibers, their thickness and cross-section, as well as their material properties. Textiles are thin plates made of thin long yarns in frictional contact with each other that are connected via a rule defined by a looping diagram. The yarns themselves are stretchable or non-stretchable. All these structural parameters of a textile define its macroscopic behavior. Its folding is determined by all these parameters and the kind of the boundary fixation or loading direction. The next influencing characteristic is the value of the loading. The same textile can behave similar to a shell and work just for bending, or behave as a membrane with large tension deformations under different magnitudes of the loading forces. In our research, bounds on the loading and frictional parameters for both types of behavior are found. Additionally, algorithms for the computation of effective textile properties based on the structural information are proposed. Further focus of our research is the nature of folding, induced by pre-strain in yarns and some in-plane restriction of the textile movements, or by the local knitting or weaving pattern and the yarn’s cross-sections. Further investigations concern different applications with spacer fabrics. Structural parameters influencing the macroscopic fabric behavior are investigated and a way for optimization is proposed. An overview of our published mathematical and numerical papers with developed algorithms is given and our numerical tools based on these theoretical results are demonstrated.https://www.mdpi.com/2673-7248/1/2/16textile modelinghomogenizationbeam-based modelbucklingfoldingspacer fabrics |
spellingShingle | Julia Orlik Maxime Krier David Neusius Kathrin Pietsch Olena Sivak Konrad Steiner Recent Efforts in Modeling and Simulation of Textiles Textiles textile modeling homogenization beam-based model buckling folding spacer fabrics |
title | Recent Efforts in Modeling and Simulation of Textiles |
title_full | Recent Efforts in Modeling and Simulation of Textiles |
title_fullStr | Recent Efforts in Modeling and Simulation of Textiles |
title_full_unstemmed | Recent Efforts in Modeling and Simulation of Textiles |
title_short | Recent Efforts in Modeling and Simulation of Textiles |
title_sort | recent efforts in modeling and simulation of textiles |
topic | textile modeling homogenization beam-based model buckling folding spacer fabrics |
url | https://www.mdpi.com/2673-7248/1/2/16 |
work_keys_str_mv | AT juliaorlik recenteffortsinmodelingandsimulationoftextiles AT maximekrier recenteffortsinmodelingandsimulationoftextiles AT davidneusius recenteffortsinmodelingandsimulationoftextiles AT kathrinpietsch recenteffortsinmodelingandsimulationoftextiles AT olenasivak recenteffortsinmodelingandsimulationoftextiles AT konradsteiner recenteffortsinmodelingandsimulationoftextiles |