Structures of Critical Nontree Graphs with Cutwidth Four

The cutwidth of a graph <i>G</i> is the smallest integer <i>k</i> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>1</mn>...

Full description

Bibliographic Details
Main Authors: Zhenkun Zhang, Hongjian Lai
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/7/1631
_version_ 1797607480490983424
author Zhenkun Zhang
Hongjian Lai
author_facet Zhenkun Zhang
Hongjian Lai
author_sort Zhenkun Zhang
collection DOAJ
description The cutwidth of a graph <i>G</i> is the smallest integer <i>k</i> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>) such that the vertices of <i>G</i> are arranged in a linear layout <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>v</mi><mi>n</mi></msub><mo>]</mo></mrow></semantics></math></inline-formula>, in such a way that for each <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>, there are at most <i>k</i> edges with one endpoint in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>v</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> and the other in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>v</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>v</mi><mi>n</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula>. The cutwidth problem for <i>G</i> is to determine the cutwidth <i>k</i> of <i>G</i>. A graph <i>G</i> with cutwidth <i>k</i> is <i>k</i>-cutwidth critical if every proper subgraph of <i>G</i> has a cutwidth less than <i>k</i> and <i>G</i> is homeomorphically minimal. In this paper, except five irregular graphs, other 4-cutwidth critical graphs were resonably classified into two classes, which are graph class with a central vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mn>0</mn></msub></semantics></math></inline-formula>, and graph class with a central cycle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>q</mi></msub></semantics></math></inline-formula> of length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≤</mo><mn>6</mn></mrow></semantics></math></inline-formula>, respectively, and any member of two graph classes can skillfuly achieve a subgraph decomposition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> with cardinality 2, 3 or 4, where each member of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> is either a 2-cutwith graph or a 3-cutwidth graph.
first_indexed 2024-03-11T05:30:32Z
format Article
id doaj.art-44d9d584b83f4e2483e780e8a55f78f4
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T05:30:32Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-44d9d584b83f4e2483e780e8a55f78f42023-11-17T17:08:24ZengMDPI AGMathematics2227-73902023-03-01117163110.3390/math11071631Structures of Critical Nontree Graphs with Cutwidth FourZhenkun Zhang0Hongjian Lai1School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, ChinaDepartment of Mathematics, West Virginia University, Morgantown, WV 26506, USAThe cutwidth of a graph <i>G</i> is the smallest integer <i>k</i> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>) such that the vertices of <i>G</i> are arranged in a linear layout <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>v</mi><mi>n</mi></msub><mo>]</mo></mrow></semantics></math></inline-formula>, in such a way that for each <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>, there are at most <i>k</i> edges with one endpoint in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>v</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> and the other in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>v</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>v</mi><mi>n</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula>. The cutwidth problem for <i>G</i> is to determine the cutwidth <i>k</i> of <i>G</i>. A graph <i>G</i> with cutwidth <i>k</i> is <i>k</i>-cutwidth critical if every proper subgraph of <i>G</i> has a cutwidth less than <i>k</i> and <i>G</i> is homeomorphically minimal. In this paper, except five irregular graphs, other 4-cutwidth critical graphs were resonably classified into two classes, which are graph class with a central vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mn>0</mn></msub></semantics></math></inline-formula>, and graph class with a central cycle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>q</mi></msub></semantics></math></inline-formula> of length <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≤</mo><mn>6</mn></mrow></semantics></math></inline-formula>, respectively, and any member of two graph classes can skillfuly achieve a subgraph decomposition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> with cardinality 2, 3 or 4, where each member of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> is either a 2-cutwith graph or a 3-cutwidth graph.https://www.mdpi.com/2227-7390/11/7/1631graph labelingcutwidthcritical graphgraph decomposition
spellingShingle Zhenkun Zhang
Hongjian Lai
Structures of Critical Nontree Graphs with Cutwidth Four
Mathematics
graph labeling
cutwidth
critical graph
graph decomposition
title Structures of Critical Nontree Graphs with Cutwidth Four
title_full Structures of Critical Nontree Graphs with Cutwidth Four
title_fullStr Structures of Critical Nontree Graphs with Cutwidth Four
title_full_unstemmed Structures of Critical Nontree Graphs with Cutwidth Four
title_short Structures of Critical Nontree Graphs with Cutwidth Four
title_sort structures of critical nontree graphs with cutwidth four
topic graph labeling
cutwidth
critical graph
graph decomposition
url https://www.mdpi.com/2227-7390/11/7/1631
work_keys_str_mv AT zhenkunzhang structuresofcriticalnontreegraphswithcutwidthfour
AT hongjianlai structuresofcriticalnontreegraphswithcutwidthfour