Fabrication of CdTe QDs/BiOI-Promoted TiO2 Hollow Microspheres with Superior Photocatalytic Performance Under Simulated Sunlight

Abstract Hollow and heterostructured architectures are recognized as an effective approach to improve photocatalytic performance. In this work, ternary TiO2/CdTe/BiOI with hollow structure was constructed via a step-by-step method. In addition, the effect of TiO2 structural regulation and the energy...

Full description

Bibliographic Details
Main Authors: Xiaofei Qu, Meihua Liu, Longfei Li, Chunqi Wang, Cuihua Zeng, Jianhuang Liu, Liang Shi, Fanglin Du
Format: Article
Language:English
Published: SpringerOpen 2019-02-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-019-2878-1
Description
Summary:Abstract Hollow and heterostructured architectures are recognized as an effective approach to improve photocatalytic performance. In this work, ternary TiO2/CdTe/BiOI with hollow structure was constructed via a step-by-step method. In addition, the effect of TiO2 structural regulation and the energy band alignment of BiOI and CdTe quantum dots (CdTe QDs) with TiO2 in TiO2/CdTe/BiOI on photocatalytic dye removal were also studied. The results reveal that the TiO2/CdTe/BiOI heterostructures with hollow substrates exhibit much higher photocatalytic activities than pure TiO2, P25, TiO2/CdTe, and TiO2/BiOI and ternary TiO2/CdTe/BiOI with solid substrates. For TiO2(H)/CdTe/BiOI, several synergistic factors may be responsible for the remarkable visible-light photodegradation performance, such as strong visible-light absorption by BiOI and larger specific surface area.
ISSN:1931-7573
1556-276X