Summary: | The bullwhip effect is defined as the distortion of demand information as one moves upstream in the supply chain, causing severe inefficiencies in the whole supply chain. Although extensive research has been conducted to study the causes of the bullwhip effect and seek mitigation solutions with respect to several demand processes, less attention has been devoted to the impact of seasonal demand in multi-echelon supply chains. This paper considers a simulation approach to study the effect of demand seasonality on the bullwhip effect and inventory stability in a four-echelon supply chain that adopts a base stock ordering policy with a moving average method. The results show that high seasonality levels reduce the bullwhip effect ratio, inventory variance ratio, and average fill rate to a great extent; especially when the demand noise is low. In contrast, all the performance measures become less sensitive to the seasonality level when the noise is high. This performance indicates that using the ratios to measure seasonal supply chain dynamics is misleading, and that it is better to directly use the variance (without dividing by the demand variance) as the estimates for the bullwhip effect and inventory performance. The results also show that the supply chain performances are highly sensitive to forecasting and safety stock parameters, regardless of the seasonality level. Furthermore, the impact of information sharing quantification shows that all the performance measures are improved regardless of demand seasonality. With information sharing, the bullwhip effect and inventory variance ratios are consistent with average fill rate results.
|