Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications
The present study aimed to investigate and compare biomarkers of oxidative stress and the activity of antioxidant enzymes in the plasma of patients with different stages of diabetic nephropathy. For this purpose, we studied (1) the levels of reactive oxygen species and reactive nitrogen species as o...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/17/13541 |
_version_ | 1797582378037673984 |
---|---|
author | Petya Goycheva Kamelia Petkova-Parlapanska Ekaterina Georgieva Yanka Karamalakova Galina Nikolova |
author_facet | Petya Goycheva Kamelia Petkova-Parlapanska Ekaterina Georgieva Yanka Karamalakova Galina Nikolova |
author_sort | Petya Goycheva |
collection | DOAJ |
description | The present study aimed to investigate and compare biomarkers of oxidative stress and the activity of antioxidant enzymes in the plasma of patients with different stages of diabetic nephropathy. For this purpose, we studied (1) the levels of reactive oxygen species and reactive nitrogen species as oxidative stress parameters, (2) lipid and protein oxidation, (3) the activity of antioxidant enzymes, and (4) cytokine production. Patients with type 2 diabetes mellitus were divided into three groups according to the loss of renal function: patients with compensated diabetes mellitus with normal renal function DMT2N0 measured as an estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m<sup>2</sup>, a group with decompensated diabetes mellitus with complication diabetic nephropathy and mild-to-moderate loss of renal function DMT2N1 (eGFR < 60 mL/min/1.73 m<sup>2</sup>: 59–45 mL/min/1.73 m<sup>2</sup>), and a decompensated diabetes mellitus with diabetic nephropathy group with moderate-to-severe loss of renal function DMT2N2 (eGFR > 30 mL/min/1.73 m<sup>2</sup>: 30–44 mL/min/1.73 m<sup>2</sup>). All results were compared with healthy volunteers. The results showed that patients with diabetic nephropathy had significantly higher levels of ROS, cytokine production, and end products of lipid and protein oxidation compared to healthy volunteers. Furthermore, patients with diabetic nephropathy had depleted levels of nitric oxide (NO), an impaired NO synthase (NOS) system, and reduced antioxidant enzyme activity (<i>p</i> < 0.05). These findings suggest that patients with impaired renal function are unable to compensate for oxidative stress. The decreased levels of NO radicals in patients with advanced renal complications may be attributed to damage NO availability in plasma. The study highlights the compromised oxidative status as a contributing factor to impaired renal function in patients with decompensated type 2 diabetes mellitus. The findings of this study have implications for understanding the pathogenesis of diabetic nephropathy and the role of oxidative stress and chronic inflammation in its development. The assessment of oxidative stress levels and inflammatory biomarkers may aid in the early detection and prediction of diabetic complications. |
first_indexed | 2024-03-10T23:20:21Z |
format | Article |
id | doaj.art-44e9506e86ad4b48b66ea40f0c7033b6 |
institution | Directory Open Access Journal |
issn | 1661-6596 1422-0067 |
language | English |
last_indexed | 2024-03-10T23:20:21Z |
publishDate | 2023-08-01 |
publisher | MDPI AG |
record_format | Article |
series | International Journal of Molecular Sciences |
spelling | doaj.art-44e9506e86ad4b48b66ea40f0c7033b62023-11-19T08:18:46ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-08-0124171354110.3390/ijms241713541Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy ComplicationsPetya Goycheva0Kamelia Petkova-Parlapanska1Ekaterina Georgieva2Yanka Karamalakova3Galina Nikolova4Propaedeutic of Internal Diseases Department, Medical Faculty, Trakia University Hospital, 6000 Stara Zagora, BulgariaMedical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, BulgariaMedical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, BulgariaMedical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, BulgariaMedical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, BulgariaThe present study aimed to investigate and compare biomarkers of oxidative stress and the activity of antioxidant enzymes in the plasma of patients with different stages of diabetic nephropathy. For this purpose, we studied (1) the levels of reactive oxygen species and reactive nitrogen species as oxidative stress parameters, (2) lipid and protein oxidation, (3) the activity of antioxidant enzymes, and (4) cytokine production. Patients with type 2 diabetes mellitus were divided into three groups according to the loss of renal function: patients with compensated diabetes mellitus with normal renal function DMT2N0 measured as an estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m<sup>2</sup>, a group with decompensated diabetes mellitus with complication diabetic nephropathy and mild-to-moderate loss of renal function DMT2N1 (eGFR < 60 mL/min/1.73 m<sup>2</sup>: 59–45 mL/min/1.73 m<sup>2</sup>), and a decompensated diabetes mellitus with diabetic nephropathy group with moderate-to-severe loss of renal function DMT2N2 (eGFR > 30 mL/min/1.73 m<sup>2</sup>: 30–44 mL/min/1.73 m<sup>2</sup>). All results were compared with healthy volunteers. The results showed that patients with diabetic nephropathy had significantly higher levels of ROS, cytokine production, and end products of lipid and protein oxidation compared to healthy volunteers. Furthermore, patients with diabetic nephropathy had depleted levels of nitric oxide (NO), an impaired NO synthase (NOS) system, and reduced antioxidant enzyme activity (<i>p</i> < 0.05). These findings suggest that patients with impaired renal function are unable to compensate for oxidative stress. The decreased levels of NO radicals in patients with advanced renal complications may be attributed to damage NO availability in plasma. The study highlights the compromised oxidative status as a contributing factor to impaired renal function in patients with decompensated type 2 diabetes mellitus. The findings of this study have implications for understanding the pathogenesis of diabetic nephropathy and the role of oxidative stress and chronic inflammation in its development. The assessment of oxidative stress levels and inflammatory biomarkers may aid in the early detection and prediction of diabetic complications.https://www.mdpi.com/1422-0067/24/17/13541diabetes mellitusdiabetic nephropathyoxidative stressNO radicalsNOS |
spellingShingle | Petya Goycheva Kamelia Petkova-Parlapanska Ekaterina Georgieva Yanka Karamalakova Galina Nikolova Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications International Journal of Molecular Sciences diabetes mellitus diabetic nephropathy oxidative stress NO radicals NOS |
title | Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications |
title_full | Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications |
title_fullStr | Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications |
title_full_unstemmed | Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications |
title_short | Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications |
title_sort | biomarkers of oxidative stress in diabetes mellitus with diabetic nephropathy complications |
topic | diabetes mellitus diabetic nephropathy oxidative stress NO radicals NOS |
url | https://www.mdpi.com/1422-0067/24/17/13541 |
work_keys_str_mv | AT petyagoycheva biomarkersofoxidativestressindiabetesmellituswithdiabeticnephropathycomplications AT kameliapetkovaparlapanska biomarkersofoxidativestressindiabetesmellituswithdiabeticnephropathycomplications AT ekaterinageorgieva biomarkersofoxidativestressindiabetesmellituswithdiabeticnephropathycomplications AT yankakaramalakova biomarkersofoxidativestressindiabetesmellituswithdiabeticnephropathycomplications AT galinanikolova biomarkersofoxidativestressindiabetesmellituswithdiabeticnephropathycomplications |