The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7
Abstract Background Oro-gastrointestinal stress in the digestive tract is the main stress to which orally administered probiotics are exposed. The regulation of oro-gastrointestinal transit (OGT) stress on the adhesion and survival of probiotics under continuous exposure to simulated salivary-gastri...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-09-01
|
Series: | Microbial Cell Factories |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12934-023-02174-3 |
_version_ | 1797450970286784512 |
---|---|
author | Dawei Chen Chunmeng Chen Congcong Guo Hui Zhang Yating Liang Yue Cheng Hengxian Qu Yunchao Wa Chenchen Zhang Chengran Guan Jianya Qian Ruixia Gu |
author_facet | Dawei Chen Chunmeng Chen Congcong Guo Hui Zhang Yating Liang Yue Cheng Hengxian Qu Yunchao Wa Chenchen Zhang Chengran Guan Jianya Qian Ruixia Gu |
author_sort | Dawei Chen |
collection | DOAJ |
description | Abstract Background Oro-gastrointestinal stress in the digestive tract is the main stress to which orally administered probiotics are exposed. The regulation of oro-gastrointestinal transit (OGT) stress on the adhesion and survival of probiotics under continuous exposure to simulated salivary-gastric juice-intestinal juice was researched in this study. Results Lactobacillus plantarum S7 had a higher survival rate after exposure to simulated OGT1 (containing 0.15% bile salt) stress and OGT2 (containing 0.30% bile salt) stress. The adhesion ability of L. plantarum S7 was significantly increased by OGT1 stress (P < 0.05) but was not changed significantly by OGT2 stress (P > 0.05), and this trend was also observed in terms of the thickness of the surface material of L. plantarum S7 cells. The expression of surface proteins of L. plantarum S7, such as the 30 S ribosomal proteins, mucus-binding protein and S-layer protein, was significantly downregulated by OGT stress (P < 0.05); meanwhile, the expression of moonlight proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycorate kinase (PGK), beta-phosphoglucomutase (PGM1), GroEL and glucose-6-phosphate isomerase (PGI), was significantly upregulated (P < 0.05). However, the upregulation of GAPDH, PGK, PGM1 and PGI mediated by OGT1 stress was greater than those mediated by OGT2 stress. The quorum sensing pathway of L. plantarum S7 was changed significantly by OGT stress compared with no OGT stress cells (P < 0.05), and the expression of Luxs in the pathway was significantly upregulated by OGT1 stress (P < 0.05). The ABC transportation pathway was significantly altered by OGT1 stress (P < 0.05), of which the expression of the peptide ABC transporter substrate-binding protein and energy-coupling factor transporter ATP-binding protein EcfA was significantly upregulated by OGT stress (P < 0.05). The glycolide metabolism pathway was significantly altered by OGT1 stress compared with that in response to OGT2 stress (P < 0.05). Conclusion L. plantarum S7 had a strong ability to resist OGT stress, which was regulated by the proteins and pathways related to OGT stress. The adhesion ability of L. plantarum S7 was enhanced after continuous exposure to OGT1 stress, making it a potential probiotic with a promising future for application. |
first_indexed | 2024-03-09T14:48:11Z |
format | Article |
id | doaj.art-44eb9958317f47f2a50d258ad90ea1cf |
institution | Directory Open Access Journal |
issn | 1475-2859 |
language | English |
last_indexed | 2024-03-09T14:48:11Z |
publishDate | 2023-09-01 |
publisher | BMC |
record_format | Article |
series | Microbial Cell Factories |
spelling | doaj.art-44eb9958317f47f2a50d258ad90ea1cf2023-11-26T14:38:06ZengBMCMicrobial Cell Factories1475-28592023-09-0122111610.1186/s12934-023-02174-3The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7Dawei Chen0Chunmeng Chen1Congcong Guo2Hui Zhang3Yating Liang4Yue Cheng5Hengxian Qu6Yunchao Wa7Chenchen Zhang8Chengran Guan9Jianya Qian10Ruixia Gu11College of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityYangzhou Hospital of Traditional Chinese MedicineCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityCollege of Food Science and Engineering, Yangzhou UniversityAbstract Background Oro-gastrointestinal stress in the digestive tract is the main stress to which orally administered probiotics are exposed. The regulation of oro-gastrointestinal transit (OGT) stress on the adhesion and survival of probiotics under continuous exposure to simulated salivary-gastric juice-intestinal juice was researched in this study. Results Lactobacillus plantarum S7 had a higher survival rate after exposure to simulated OGT1 (containing 0.15% bile salt) stress and OGT2 (containing 0.30% bile salt) stress. The adhesion ability of L. plantarum S7 was significantly increased by OGT1 stress (P < 0.05) but was not changed significantly by OGT2 stress (P > 0.05), and this trend was also observed in terms of the thickness of the surface material of L. plantarum S7 cells. The expression of surface proteins of L. plantarum S7, such as the 30 S ribosomal proteins, mucus-binding protein and S-layer protein, was significantly downregulated by OGT stress (P < 0.05); meanwhile, the expression of moonlight proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycorate kinase (PGK), beta-phosphoglucomutase (PGM1), GroEL and glucose-6-phosphate isomerase (PGI), was significantly upregulated (P < 0.05). However, the upregulation of GAPDH, PGK, PGM1 and PGI mediated by OGT1 stress was greater than those mediated by OGT2 stress. The quorum sensing pathway of L. plantarum S7 was changed significantly by OGT stress compared with no OGT stress cells (P < 0.05), and the expression of Luxs in the pathway was significantly upregulated by OGT1 stress (P < 0.05). The ABC transportation pathway was significantly altered by OGT1 stress (P < 0.05), of which the expression of the peptide ABC transporter substrate-binding protein and energy-coupling factor transporter ATP-binding protein EcfA was significantly upregulated by OGT stress (P < 0.05). The glycolide metabolism pathway was significantly altered by OGT1 stress compared with that in response to OGT2 stress (P < 0.05). Conclusion L. plantarum S7 had a strong ability to resist OGT stress, which was regulated by the proteins and pathways related to OGT stress. The adhesion ability of L. plantarum S7 was enhanced after continuous exposure to OGT1 stress, making it a potential probiotic with a promising future for application.https://doi.org/10.1186/s12934-023-02174-3Simulated oro-gastrointestinal transit stressRegulationAdhesion abilityLactobacillus plantarum S7 |
spellingShingle | Dawei Chen Chunmeng Chen Congcong Guo Hui Zhang Yating Liang Yue Cheng Hengxian Qu Yunchao Wa Chenchen Zhang Chengran Guan Jianya Qian Ruixia Gu The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7 Microbial Cell Factories Simulated oro-gastrointestinal transit stress Regulation Adhesion ability Lactobacillus plantarum S7 |
title | The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7 |
title_full | The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7 |
title_fullStr | The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7 |
title_full_unstemmed | The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7 |
title_short | The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7 |
title_sort | regulation of simulated artificial oro gastrointestinal transit stress on the adhesion of lactobacillus plantarum s7 |
topic | Simulated oro-gastrointestinal transit stress Regulation Adhesion ability Lactobacillus plantarum S7 |
url | https://doi.org/10.1186/s12934-023-02174-3 |
work_keys_str_mv | AT daweichen theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT chunmengchen theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT congcongguo theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT huizhang theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT yatingliang theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT yuecheng theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT hengxianqu theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT yunchaowa theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT chenchenzhang theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT chengranguan theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT jianyaqian theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT ruixiagu theregulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT daweichen regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT chunmengchen regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT congcongguo regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT huizhang regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT yatingliang regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT yuecheng regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT hengxianqu regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT yunchaowa regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT chenchenzhang regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT chengranguan regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT jianyaqian regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 AT ruixiagu regulationofsimulatedartificialorogastrointestinaltransitstressontheadhesionoflactobacillusplantarums7 |