Summary: | With the rapid development of smart wearable devices and the urgent demands for new energy resources, fibrous flexible power supply units had attracted a lot of interest. Here, we reported the fabrication of polylactic acid (PLA) piezoelectric nanofibrous yarn-based fabric through conjugated electrospinning and weaving process. Five kinds of PLA yarns including poly(l-lactide) (PLLA), poly(d-lactide) (PDLA), PLLA positive/PDLA negative, PDLA positive/PLLA negative, and PLLA/PDLA mixture (1:1 w/w) ones were prepared and investigated. Among these, the PLLA/PDLA yarn had more uniform and oriented structure with 301 MPa tensile strength, which could meet the requirement of weaving. A 4 cm × 4 cm woven PLLA/PDLA fabric could provide a maximum current of 90.86 nA and a voltage of 8.69 V under 5 N force, and the piezoelectricity could be enhanced by the fabric area and the applied force. This approach may be helpful for the design of wearing generators.
|