Necessary and sufficient conditions on the existence of solutions for the exterior Dirichlet problem of Hessian equations

Abstract In this paper, we consider the exterior Dirichlet problem of Hessian equations σ k ( λ ( D 2 u ) ) = g ( x ) $\sigma _{k}(\lambda (D^{2}u))=g(x)$ with g being a perturbation of a general positive function at infinity. By estimating the eigenvalues of the solution, we obtain the necessary an...

Disgrifiad llawn

Manylion Llyfryddiaeth
Prif Awduron: Limei Dai, Hongfei Li
Fformat: Erthygl
Iaith:English
Cyhoeddwyd: SpringerOpen 2022-06-01
Cyfres:Boundary Value Problems
Pynciau:
Mynediad Ar-lein:https://doi.org/10.1186/s13661-022-01619-9
Disgrifiad
Crynodeb:Abstract In this paper, we consider the exterior Dirichlet problem of Hessian equations σ k ( λ ( D 2 u ) ) = g ( x ) $\sigma _{k}(\lambda (D^{2}u))=g(x)$ with g being a perturbation of a general positive function at infinity. By estimating the eigenvalues of the solution, we obtain the necessary and sufficient conditions of existence of radial symmetric solutions with asymptotic behavior at infinity.
ISSN:1687-2770