Technology for Improving Technical, Economic and Ecological Efficiency of Boiler Plants Using Physico-Chemical Correction of the Water-Fuel Emulsions Composition

The aim of this work is to substantiate the possibility of increasing the technical, economic and environmental efficiency, as well as the efficiency of boilers (in terms of the intensity of corrosion processes) when burning water-fuel emulsions with the increased water and salt contents. To achieve...

Full description

Bibliographic Details
Main Authors: Filipshchuk A.N., Kolbasenko O.V., Shevtsov A.P., Dymo B.V.
Format: Article
Language:English
Published: Academy of Sciences of Moldova 2021-09-01
Series:Problems of the Regional Energetics
Subjects:
Online Access:https://journal.ie.asm.md/assets/files/06_03_51_2021.pdf
Description
Summary:The aim of this work is to substantiate the possibility of increasing the technical, economic and environmental efficiency, as well as the efficiency of boilers (in terms of the intensity of corrosion processes) when burning water-fuel emulsions with the increased water and salt contents. To achieve these goals complex experimental studies were performed on the combustion of fuel oil and emulsions based on it, as well as the corrosion processes with a water content in the range from 2 to 30%, and a salt content ranging from 17 to 490 mg/dm3 hydrodynamic homogenizer. A significant result of the studies carried out is that with a water content of ~30% in the fuel gases composition, an NO2:NO ratio of 0,33 was achieved. That increased the absorption properties of gases and allowed passivation of carbon steel in sulfuric acid condensate. It also decreased the intensity of the low-temperature corrosion in the range of metal temperature of 130...70°C. All these made it possible to use condensation surfaces and to reduce the flue gases temperatures, to increase the efficiency of boilers, to ensure the economy of pure fuel, to increase the depth of utilization of the exhaust gases heat, and to reduce the concentration of toxic gases. The results obtained differed from those known. The significance of the results obtained lies in the fact that a technology was developed for the integrated use of the electrodialysis water resources, the waste and oil-containing waters, ensuring the operability of boilers, with a water content of emulsions of ~30% and a salt content of up to 450 mg/dm3.
ISSN:1857-0070