Summary: | Composite Extrusion Modelling (CEM) is a new additive manufacturing process for metal that uses Metal Injection Moulding (MIM) materials. The MIM material is printed on a build plate using a moveable extruder. Subsequently, the printed greenparts are debinded and sintered in a two-step oven process. In contrast to beam-based additive processes, the microstructure of the part is not generated layer-wise by melting and solidifying small areas, but in a steady manner during sintering from the outside of the part to the inside, in order to create dense metal parts. In this study, various structures were printed and sintered in order to investigate the mechanical properties and dimensional properties of the resulting stainless-steel structures, and their dependence on the infill percentage. The measured density of the dense sintered parts is 7.47 g/cm3 and the sintering shrinkage is in the range from 14.6 to 16.8%. The compressive strength (σdm50) of the specimens varies in the range from 1220 to 2345 MPa dependent on the infill percentage. The measured density and the sintering shrinkage are very close to the values specified by the manufacturer of the MIM material.
|