Detecting small-scale geological structures using diffraction attributes

We developed a method that uses diffracted wave data to address the issue of precisely characterizing small geological structures in a reservoir and demonstrated its effectiveness using model calculations. The method was implemented to characterize a fractured reservoir and igneous rock intruded in...

Full description

Bibliographic Details
Main Authors: Wang Juhe, Chen Xiuping, Shu Mengcheng, Cheng Sen
Format: Article
Language:English
Published: EDP Sciences 2022-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2022/19/e3sconf_esat2022_01074.pdf
Description
Summary:We developed a method that uses diffracted wave data to address the issue of precisely characterizing small geological structures in a reservoir and demonstrated its effectiveness using model calculations. The method was implemented to characterize a fractured reservoir and igneous rock intruded in a carbonate reservoir. Two diffraction attributes were analyzed to precisely characterize the fine, small-scale geological structures therein. Principal component analysis was performed to extract diffraction data from seismic wave fields, and the reflection and diffraction wave fields were separated based on the kinematics and dynamics of the diffracted waves. The resulting diffracted wave fields provided an excellent basis upon which to assess the distribution of small geological structures in the study area. This proved, experimentally, that our diffraction-based method has the potential to characterize the distribution of small geological structures precisely and holistically.
ISSN:2267-1242