Chromatic Differentiation of Functional Mappings of the Composition of Nucleic Acids

Color visualization of the DNA of diverse living beings can help in the exploration of the issue of chromatic differentiation of functional mappings of the nucleotide composition of DNA molecules. By “chromatic differentiation”, we mean the coloring of these mappings. Algorithms for coloring genetic...

Full description

Bibliographic Details
Main Authors: Ivan V. Stepanyan, Mihail Y. Lednev
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/4/942
Description
Summary:Color visualization of the DNA of diverse living beings can help in the exploration of the issue of chromatic differentiation of functional mappings of the nucleotide composition of DNA molecules. By “chromatic differentiation”, we mean the coloring of these mappings. Algorithms for coloring genetic representations improve the perception of complex genetic information using color. Methodologically, to build the chromatic differentiation of functional mappings of the nucleotide composition of DNA, we employed the system of nucleotide Walsh functions and the Chaos Game Representation (CGR) algorithm. The authors compared these two approaches and proposed a modified CGR algorithm. The work presents various algorithms of chromatic differentiation based on the nucleotide Walsh functions at a specific location of the fragment in the nucleotide chain and on the frequencies of those fragments. The results of the analysis provide examples of chromatic differentiation in a variety of parametric spaces. The paper describes various approaches to coloring and video animation of DNA molecules in their chromatically differentiated spans of physicochemical parameters.
ISSN:2073-8994