Tensile behaviour of WAAM high strength steel material and members

Wire arc additive manufacturing (WAAM), a method of metal 3D printing, has the capacity to create large scale elements suitable for construction applications with a high degree of design freedom and structural efficiency. There is currently however a lack of fundamental experimental data on the mate...

Full description

Bibliographic Details
Main Authors: Ben Weber, Xin Meng, Ruizhi Zhang, Masashi Nitawaki, Takayuki Sagawa, Leroy Gardner
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127523009334
Description
Summary:Wire arc additive manufacturing (WAAM), a method of metal 3D printing, has the capacity to create large scale elements suitable for construction applications with a high degree of design freedom and structural efficiency. There is currently however a lack of fundamental experimental data on the material and structural performance of such elements. Towards addressing this limitation, the tensile behaviour of WAAM high strength steel produced using different printing strategies is the focus of the present study. WAAM steel plates and tubular tension members manufactured with different interpass temperatures and toolpaths using ER110S-G welding wire were examined. A total of 60 tensile coupons, consisting of 40 as-built and 20 machined specimens, and 8 as-built circular hollow section (CHS) tension members, were tested. The examined WAAM materials were found to exhibit very little anisotropy, corroborated by a nearly homogeneous crystallographic texture observed by microstructural analysis, while the inherent surface undulations were shown to result in a varying degree of reduction in the material stiffness, strength and ductility at different angles to the print layer orientation. The different printing strategies led to varying surface geometries; combined with different interpass temperatures, they also resulted in different thermal histories and thus different mechanical properties. The tension members showed good structural resistance, but a considerable reduction in ductility compared to the coupon tests, due to the greater geometric variability and manufacturing defects.
ISSN:0264-1275