Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study

BackgroundThe COVID-19 pandemic has affected the health, economic, and social fabric of many nations worldwide. Identification of individual-level susceptibility factors may help people in identifying and managing their emotional, psychological, and social well-being. ObjectiveThis study...

Full description

Bibliographic Details
Main Authors: Jha, Indra Prakash, Awasthi, Raghav, Kumar, Ajit, Kumar, Vibhor, Sethi, Tavpritesh
Format: Article
Language:English
Published: JMIR Publications 2021-04-01
Series:JMIR Mental Health
Online Access:https://mental.jmir.org/2021/4/e25097
_version_ 1818886356532723712
author Jha, Indra Prakash
Awasthi, Raghav
Kumar, Ajit
Kumar, Vibhor
Sethi, Tavpritesh
author_facet Jha, Indra Prakash
Awasthi, Raghav
Kumar, Ajit
Kumar, Vibhor
Sethi, Tavpritesh
author_sort Jha, Indra Prakash
collection DOAJ
description BackgroundThe COVID-19 pandemic has affected the health, economic, and social fabric of many nations worldwide. Identification of individual-level susceptibility factors may help people in identifying and managing their emotional, psychological, and social well-being. ObjectiveThis study is focused on learning a ranked list of factors that could indicate a predisposition to a mental disorder during the COVID-19 pandemic. MethodsIn this study, we have used a survey of 17,764 adults in the United States from different age groups, genders, and socioeconomic statuses. Through initial statistical analysis and Bayesian network inference, we have identified key factors affecting mental health during the COVID-19 pandemic. Integrating Bayesian networks with classical machine learning approaches led to effective modeling of the level of mental health prevalence. ResultsOverall, females were more stressed than males, and people in the age group 18-29 years were more vulnerable to anxiety than other age groups. Using the Bayesian network model, we found that people with a chronic mental illness were more prone to mental disorders during the COVID-19 pandemic. The new realities of working from home; homeschooling; and lack of communication with family, friends, and neighbors induces mental pressure. Financial assistance from social security helps in reducing mental stress during the COVID-19–generated economic crises. Finally, using supervised machine learning models, we predicted the most mentally vulnerable people with ~80% accuracy. ConclusionsMultiple factors such as social isolation, digital communication, and working and schooling from home were identified as factors of mental illness during the COVID-19 pandemic. Regular in-person communication with friends and family, a healthy social life, and social security were key factors, and taking care of people with a history of mental disease appears to be even more important during this time.
first_indexed 2024-12-19T16:20:02Z
format Article
id doaj.art-45391bc076324f648e92744780bdac11
institution Directory Open Access Journal
issn 2368-7959
language English
last_indexed 2024-12-19T16:20:02Z
publishDate 2021-04-01
publisher JMIR Publications
record_format Article
series JMIR Mental Health
spelling doaj.art-45391bc076324f648e92744780bdac112022-12-21T20:14:30ZengJMIR PublicationsJMIR Mental Health2368-79592021-04-0184e2509710.2196/25097Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational StudyJha, Indra PrakashAwasthi, RaghavKumar, AjitKumar, VibhorSethi, TavpriteshBackgroundThe COVID-19 pandemic has affected the health, economic, and social fabric of many nations worldwide. Identification of individual-level susceptibility factors may help people in identifying and managing their emotional, psychological, and social well-being. ObjectiveThis study is focused on learning a ranked list of factors that could indicate a predisposition to a mental disorder during the COVID-19 pandemic. MethodsIn this study, we have used a survey of 17,764 adults in the United States from different age groups, genders, and socioeconomic statuses. Through initial statistical analysis and Bayesian network inference, we have identified key factors affecting mental health during the COVID-19 pandemic. Integrating Bayesian networks with classical machine learning approaches led to effective modeling of the level of mental health prevalence. ResultsOverall, females were more stressed than males, and people in the age group 18-29 years were more vulnerable to anxiety than other age groups. Using the Bayesian network model, we found that people with a chronic mental illness were more prone to mental disorders during the COVID-19 pandemic. The new realities of working from home; homeschooling; and lack of communication with family, friends, and neighbors induces mental pressure. Financial assistance from social security helps in reducing mental stress during the COVID-19–generated economic crises. Finally, using supervised machine learning models, we predicted the most mentally vulnerable people with ~80% accuracy. ConclusionsMultiple factors such as social isolation, digital communication, and working and schooling from home were identified as factors of mental illness during the COVID-19 pandemic. Regular in-person communication with friends and family, a healthy social life, and social security were key factors, and taking care of people with a history of mental disease appears to be even more important during this time.https://mental.jmir.org/2021/4/e25097
spellingShingle Jha, Indra Prakash
Awasthi, Raghav
Kumar, Ajit
Kumar, Vibhor
Sethi, Tavpritesh
Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study
JMIR Mental Health
title Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study
title_full Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study
title_fullStr Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study
title_full_unstemmed Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study
title_short Learning the Mental Health Impact of COVID-19 in the United States With Explainable Artificial Intelligence: Observational Study
title_sort learning the mental health impact of covid 19 in the united states with explainable artificial intelligence observational study
url https://mental.jmir.org/2021/4/e25097
work_keys_str_mv AT jhaindraprakash learningthementalhealthimpactofcovid19intheunitedstateswithexplainableartificialintelligenceobservationalstudy
AT awasthiraghav learningthementalhealthimpactofcovid19intheunitedstateswithexplainableartificialintelligenceobservationalstudy
AT kumarajit learningthementalhealthimpactofcovid19intheunitedstateswithexplainableartificialintelligenceobservationalstudy
AT kumarvibhor learningthementalhealthimpactofcovid19intheunitedstateswithexplainableartificialintelligenceobservationalstudy
AT sethitavpritesh learningthementalhealthimpactofcovid19intheunitedstateswithexplainableartificialintelligenceobservationalstudy