Mittag–Leffler Memory Kernel in Lévy Flights

In this article, we make a detailed study of some mathematical aspects associated with a generalized Lévy process using fractional diffusion equation with Mittag−Leffler kernel in the context of Atangana−Baleanu operator. The Lévy process has several application...

Full description

Bibliographic Details
Main Author: Maike A. F. dos Santos
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/9/766
_version_ 1818147269123244032
author Maike A. F. dos Santos
author_facet Maike A. F. dos Santos
author_sort Maike A. F. dos Santos
collection DOAJ
description In this article, we make a detailed study of some mathematical aspects associated with a generalized L&#233;vy process using fractional diffusion equation with Mittag&#8722;Leffler kernel in the context of Atangana&#8722;Baleanu operator. The L&#233;vy process has several applications in science, with a particular emphasis on statistical physics and biological systems. Using the continuous time random walk, we constructed a fractional diffusion equation that includes two fractional operators, the Riesz operator to Laplacian term and the Atangana&#8722;Baleanu in time derivative, i.e., <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mrow></mrow> <mrow> <mspace width="0.277778em"></mspace> <mspace width="0.277778em"></mspace> <mi>a</mi> </mrow> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </msubsup> <msubsup> <mi mathvariant="script">D</mi> <mi>t</mi> <mi>&#945;</mi> </msubsup> <mi>&#961;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi mathvariant="script">K</mi> <mrow> <mi>&#945;</mi> <mo>,</mo> <mi>&#956;</mi> </mrow> </msub> <mspace width="4pt"></mspace> <msubsup> <mi>&#8706;</mi> <mi>x</mi> <mi>&#956;</mi> </msubsup> <mi>&#961;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. We present the exact solution to model and discuss how the Mittag&#8722;Leffler kernel brings a new point of view to L&#233;vy process. Moreover, we discuss a series of scenarios where the present model can be useful in the description of real systems.
first_indexed 2024-12-11T12:32:33Z
format Article
id doaj.art-453ad5b5d2a94ad8b8bca545a4967844
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-11T12:32:33Z
publishDate 2019-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-453ad5b5d2a94ad8b8bca545a49678442022-12-22T01:07:12ZengMDPI AGMathematics2227-73902019-08-017976610.3390/math7090766math7090766Mittag–Leffler Memory Kernel in Lévy FlightsMaike A. F. dos Santos0Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems–Rua Dr. Xavier Sigaud 150, Rio de Janeiro 22290-180, BrazilIn this article, we make a detailed study of some mathematical aspects associated with a generalized L&#233;vy process using fractional diffusion equation with Mittag&#8722;Leffler kernel in the context of Atangana&#8722;Baleanu operator. The L&#233;vy process has several applications in science, with a particular emphasis on statistical physics and biological systems. Using the continuous time random walk, we constructed a fractional diffusion equation that includes two fractional operators, the Riesz operator to Laplacian term and the Atangana&#8722;Baleanu in time derivative, i.e., <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mrow></mrow> <mrow> <mspace width="0.277778em"></mspace> <mspace width="0.277778em"></mspace> <mi>a</mi> </mrow> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </msubsup> <msubsup> <mi mathvariant="script">D</mi> <mi>t</mi> <mi>&#945;</mi> </msubsup> <mi>&#961;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi mathvariant="script">K</mi> <mrow> <mi>&#945;</mi> <mo>,</mo> <mi>&#956;</mi> </mrow> </msub> <mspace width="4pt"></mspace> <msubsup> <mi>&#8706;</mi> <mi>x</mi> <mi>&#956;</mi> </msubsup> <mi>&#961;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. We present the exact solution to model and discuss how the Mittag&#8722;Leffler kernel brings a new point of view to L&#233;vy process. Moreover, we discuss a series of scenarios where the present model can be useful in the description of real systems.https://www.mdpi.com/2227-7390/7/9/766fractional calculuscontinuous time random walksLévy processexact solutions
spellingShingle Maike A. F. dos Santos
Mittag–Leffler Memory Kernel in Lévy Flights
Mathematics
fractional calculus
continuous time random walks
Lévy process
exact solutions
title Mittag–Leffler Memory Kernel in Lévy Flights
title_full Mittag–Leffler Memory Kernel in Lévy Flights
title_fullStr Mittag–Leffler Memory Kernel in Lévy Flights
title_full_unstemmed Mittag–Leffler Memory Kernel in Lévy Flights
title_short Mittag–Leffler Memory Kernel in Lévy Flights
title_sort mittag leffler memory kernel in levy flights
topic fractional calculus
continuous time random walks
Lévy process
exact solutions
url https://www.mdpi.com/2227-7390/7/9/766
work_keys_str_mv AT maikeafdossantos mittaglefflermemorykernelinlevyflights