Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex

Cerebrovascular reactivity (CVR) to changes in the partial pressure of arterial carbon dioxide (PaCO2) is an important mechanism that maintains CO2 or pH homeostasis in the brain. To what extent this is influenced by gravitational stress and corresponding implications for the regulation of cerebral...

Full description

Bibliographic Details
Main Authors: Hironori Watanabe, Shotaro Saito, Takuro Washio, Damian Miles Bailey, Shigehiko Ogoh
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-01-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphys.2021.749255/full
_version_ 1798033356404817920
author Hironori Watanabe
Shotaro Saito
Takuro Washio
Takuro Washio
Damian Miles Bailey
Damian Miles Bailey
Shigehiko Ogoh
Shigehiko Ogoh
author_facet Hironori Watanabe
Shotaro Saito
Takuro Washio
Takuro Washio
Damian Miles Bailey
Damian Miles Bailey
Shigehiko Ogoh
Shigehiko Ogoh
author_sort Hironori Watanabe
collection DOAJ
description Cerebrovascular reactivity (CVR) to changes in the partial pressure of arterial carbon dioxide (PaCO2) is an important mechanism that maintains CO2 or pH homeostasis in the brain. To what extent this is influenced by gravitational stress and corresponding implications for the regulation of cerebral blood flow (CBF) remain unclear. The present study examined the onset responses of pulmonary ventilation (V̇E) and anterior middle (MCA) and posterior (PCA) cerebral artery mean blood velocity (Vmean) responses to acute hypercapnia (5% CO2) to infer dynamic changes in the central respiratory chemoreflex and cerebrovascular reactivity (CVR), in supine and 50° head-up tilt (HUT) positions. Each onset response was evaluated using a single-exponential regression model consisting of the response time latency [CO2-response delay (t0)] and time constant (τ). Onset response of V̇E and PCA Vmean to changes in CO2 was unchanged during 50° HUT compared with supine (τ: V̇E, p = 0.707; PCA Vmean, p = 0.071 vs. supine) but the MCA Vmean onset response was faster during supine than during 50° HUT (τ: p = 0.003 vs. supine). These data indicate that gravitational stress selectively impaired dynamic CVR in the anterior cerebral circulation, whereas the posterior circulation was preserved, independent of any changes to the central respiratory chemoreflex. Collectively, our findings highlight the regional heterogeneity underlying CBF regulation that may have translational implications for the microgravity (and hypercapnia) associated with deep-space flight notwithstanding terrestrial orthostatic diseases that have been linked to accelerated cognitive decline and neurodegeneration.
first_indexed 2024-04-11T20:29:05Z
format Article
id doaj.art-4547b08ef6b1458891b1b542e1122354
institution Directory Open Access Journal
issn 1664-042X
language English
last_indexed 2024-04-11T20:29:05Z
publishDate 2022-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physiology
spelling doaj.art-4547b08ef6b1458891b1b542e11223542022-12-22T04:04:33ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2022-01-011210.3389/fphys.2021.749255749255Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory ChemoreflexHironori Watanabe0Shotaro Saito1Takuro Washio2Takuro Washio3Damian Miles Bailey4Damian Miles Bailey5Shigehiko Ogoh6Shigehiko Ogoh7Department of Biomedical Engineering, Toyo University, Kawagoe, JapanDepartment of Biomedical Engineering, Toyo University, Kawagoe, JapanDepartment of Biomedical Engineering, Toyo University, Kawagoe, JapanResearch Fellow of Japan Society for the Promotion of Science, Tokyo, JapanResearch Fellow of Japan Society for the Promotion of Science, Tokyo, JapanNeurovascular Research Laboratory, University of South Wales, Pontypridd, United KingdomDepartment of Biomedical Engineering, Toyo University, Kawagoe, JapanNeurovascular Research Laboratory, University of South Wales, Pontypridd, United KingdomCerebrovascular reactivity (CVR) to changes in the partial pressure of arterial carbon dioxide (PaCO2) is an important mechanism that maintains CO2 or pH homeostasis in the brain. To what extent this is influenced by gravitational stress and corresponding implications for the regulation of cerebral blood flow (CBF) remain unclear. The present study examined the onset responses of pulmonary ventilation (V̇E) and anterior middle (MCA) and posterior (PCA) cerebral artery mean blood velocity (Vmean) responses to acute hypercapnia (5% CO2) to infer dynamic changes in the central respiratory chemoreflex and cerebrovascular reactivity (CVR), in supine and 50° head-up tilt (HUT) positions. Each onset response was evaluated using a single-exponential regression model consisting of the response time latency [CO2-response delay (t0)] and time constant (τ). Onset response of V̇E and PCA Vmean to changes in CO2 was unchanged during 50° HUT compared with supine (τ: V̇E, p = 0.707; PCA Vmean, p = 0.071 vs. supine) but the MCA Vmean onset response was faster during supine than during 50° HUT (τ: p = 0.003 vs. supine). These data indicate that gravitational stress selectively impaired dynamic CVR in the anterior cerebral circulation, whereas the posterior circulation was preserved, independent of any changes to the central respiratory chemoreflex. Collectively, our findings highlight the regional heterogeneity underlying CBF regulation that may have translational implications for the microgravity (and hypercapnia) associated with deep-space flight notwithstanding terrestrial orthostatic diseases that have been linked to accelerated cognitive decline and neurodegeneration.https://www.frontiersin.org/articles/10.3389/fphys.2021.749255/fullanterior cerebral blood flowposterior cerebral blood flowrespiratory chemoreflexhead-up tilthypercapnia
spellingShingle Hironori Watanabe
Shotaro Saito
Takuro Washio
Takuro Washio
Damian Miles Bailey
Damian Miles Bailey
Shigehiko Ogoh
Shigehiko Ogoh
Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex
Frontiers in Physiology
anterior cerebral blood flow
posterior cerebral blood flow
respiratory chemoreflex
head-up tilt
hypercapnia
title Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex
title_full Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex
title_fullStr Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex
title_full_unstemmed Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex
title_short Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex
title_sort acute gravitational stress selectively impairs dynamic cerebrovascular reactivity in the anterior circulation independent of changes to the central respiratory chemoreflex
topic anterior cerebral blood flow
posterior cerebral blood flow
respiratory chemoreflex
head-up tilt
hypercapnia
url https://www.frontiersin.org/articles/10.3389/fphys.2021.749255/full
work_keys_str_mv AT hironoriwatanabe acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex
AT shotarosaito acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex
AT takurowashio acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex
AT takurowashio acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex
AT damianmilesbailey acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex
AT damianmilesbailey acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex
AT shigehikoogoh acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex
AT shigehikoogoh acutegravitationalstressselectivelyimpairsdynamiccerebrovascularreactivityintheanteriorcirculationindependentofchangestothecentralrespiratorychemoreflex