Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance

Abstract We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrödinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in dif...

Full description

Bibliographic Details
Main Authors: Andrei V. Ermolaev, Mehdi Mabed, Christophe Finot, Goëry Genty, John M. Dudley
Format: Article
Language:English
Published: Nature Portfolio 2023-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-37039-7
_version_ 1797789838309588992
author Andrei V. Ermolaev
Mehdi Mabed
Christophe Finot
Goëry Genty
John M. Dudley
author_facet Andrei V. Ermolaev
Mehdi Mabed
Christophe Finot
Goëry Genty
John M. Dudley
author_sort Andrei V. Ermolaev
collection DOAJ
description Abstract We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrödinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.
first_indexed 2024-03-13T01:56:16Z
format Article
id doaj.art-455b659089f4461cabcc88ee2ccf4357
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-13T01:56:16Z
publishDate 2023-06-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-455b659089f4461cabcc88ee2ccf43572023-07-02T11:12:31ZengNature PortfolioScientific Reports2045-23222023-06-011311910.1038/s41598-023-37039-7Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balanceAndrei V. Ermolaev0Mehdi Mabed1Christophe Finot2Goëry Genty3John M. Dudley4Université de Franche-Comté, Institut FEMTO-ST, CNRS UMR 6174Université de Franche-Comté, Institut FEMTO-ST, CNRS UMR 6174Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université de BourgognePhotonics Laboratory, Tampere UniversityUniversité de Franche-Comté, Institut FEMTO-ST, CNRS UMR 6174Abstract We analyze the dynamics of modulation instability in optical fiber (or any other nonlinear Schrödinger equation system) using the machine-learning technique of data-driven dominant balance. We aim to automate the identification of which particular physical processes drive propagation in different regimes, a task usually performed using intuition and comparison with asymptotic limits. We first apply the method to interpret known analytic results describing Akhmediev breather, Kuznetsov-Ma, and Peregrine soliton (rogue wave) structures, and show how we can automatically distinguish regions of dominant nonlinear propagation from regions where nonlinearity and dispersion combine to drive the observed spatio-temporal localization. Using numerical simulations, we then apply the technique to the more complex case of noise-driven spontaneous modulation instability, and show that we can readily isolate different regimes of dominant physical interactions, even within the dynamics of chaotic propagation.https://doi.org/10.1038/s41598-023-37039-7
spellingShingle Andrei V. Ermolaev
Mehdi Mabed
Christophe Finot
Goëry Genty
John M. Dudley
Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance
Scientific Reports
title Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance
title_full Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance
title_fullStr Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance
title_full_unstemmed Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance
title_short Analysis of interaction dynamics and rogue wave localization in modulation instability using data-driven dominant balance
title_sort analysis of interaction dynamics and rogue wave localization in modulation instability using data driven dominant balance
url https://doi.org/10.1038/s41598-023-37039-7
work_keys_str_mv AT andreivermolaev analysisofinteractiondynamicsandroguewavelocalizationinmodulationinstabilityusingdatadrivendominantbalance
AT mehdimabed analysisofinteractiondynamicsandroguewavelocalizationinmodulationinstabilityusingdatadrivendominantbalance
AT christophefinot analysisofinteractiondynamicsandroguewavelocalizationinmodulationinstabilityusingdatadrivendominantbalance
AT goerygenty analysisofinteractiondynamicsandroguewavelocalizationinmodulationinstabilityusingdatadrivendominantbalance
AT johnmdudley analysisofinteractiondynamicsandroguewavelocalizationinmodulationinstabilityusingdatadrivendominantbalance